The vgf gene has been identified as an energy homeostasis regulator. Vgf encodes a 617-aa precursor protein that is processed to yield an incompletely characterized panel of neuropeptides. Until now, it was an unproved assumption that VGF-derived peptides could regulate metabolism. Here, a VGF peptide designated TLQP-21 was identified in rat brain extracts by means of immunoprecipitation, microcapillary liquid chromatography-tandem MS, and database searching algorithms. Chronic intracerebroventricular (i.c.v.) injection of TLQP-21 (15 g͞day for 14 days) increased resting energy expenditure (EE) and rectal temperature in mice. These effects were paralleled by increased epinephrine and up-regulation of brown adipose tissue 2-AR (2 adrenergic receptor) and white adipose tissue (WAT) PPAR-␦ (peroxisome proliferator-activated receptor ␦), 3-AR, and UCP1 (uncoupling protein 1) mRNAs and were independent of locomotor activity and thyroid hormones. Hypothalamic gene expression of orexigenic and anorexigenic neuropeptides was unchanged. Furthermore, in mice that were fed a high-fat diet for 14 days, TLQP-21 prevented the increase in body and WAT weight as well as hormonal changes that are associated with a high-fat regimen. Biochemical and molecular analyses suggest that TLQP-21 exerts its effects by stimulating autonomic activation of adrenal medulla and adipose tissues. In conclusion, we present here the identification in the CNS of a previously uncharacterized VGF-derived peptide and prove that its chronic i.c.v. infusion effected an increase in EE and limited the early phase of diet-induced obesity.autonomic nervous system ͉  adrenergic receptor ͉ MALDI-TOF ͉ neuropeptide ͉ peroxisome proliferator-activated receptor ␦ E nergy homeostasis is a complex physiological function that is coordinated at multiple levels. Stimulated by the discovery of leptin and the pandemic diffusion of obesity and type-2 diabetes, the regulation of energy homeostasis has received increasing attention (1-4). New players are being continuously identified and screened as molecular candidates to counteract obesity (5-10). Vgf, initially identified as a nerve growth factor-responsive gene, is also robustly induced by BDNF and neurotrophin 3 and marginally induced by epidermal and fibroblast growth factors, IL-6, and insulin (11-13). Vgf received great attention after the observation that VGF-deficient mice are lean, hypermetabolic, and resistant to various types of obesity (14, 15). In the rat brain, VGF is abundant in the cortex, hypothalamus, hippocampus, and olfactory system and in a number of thalamic, septal, amygdaloid, and brainstem nuclei, with the local availability of neurotrophins for receptor occupation being the critical parameter in determining its selective expression (12, 13). Changes in vgf expression also increase in the arcuate nucleus of fasted rats (14) and hamsters that are exposed to a short or long day's length (16). However, up until now, it was still unproved that VGF-derived peptides are metabolic neuromodulators (...
Surgical reconstruction of the anterior cruciate ligament (ACL) does not necessarily decrease the risk of developing osteoarthritis (OA). The inflammatory response and relative changes in pro-and anti-inflammatory cytokines could participate in triggering the development of OA. To test this hypothesis we measured the concentrations of IL-1b, IL-1ra, IL-6, IL-8, IL-10, and TNF-a at different times after ACL rupture. The sample population consisted of 48 patients with ACL tear which were assigned to different groups according to the time elapsed from the injury: 22 acute (A), 7 early sub-acute (ESA), 11 late sub-acute (LSA), and 8 chronic (C). In group A, there were high levels of IL-1b, IL-6, and IL-8, whereas levels of IL-1ra and TNF-a were significantly lower than usually reported. IL-1b and IL-8 concentrations returned with time to normal levels in the ESA group. Interestingly, IL-1ra levels remained always significantly lower than normally reported levels, and TNF-a levels did not increase after trauma. Our data show increased level of pro-inflammatory cytokines in the acute phase of inflammation which could be responsible for triggering cartilage catabolism and suggest that prompt neutralization of IL-6 and IL-8 accumulations in synovial fluid could help prevent development of OA in ACL-injured knees. ß
Ghrelin is a new gastric peptide involved in food intake control and growth hormone release. We aimed to assess its cell localisation in man during adult and fetal life and to clarify present interspecies inconsistencies of gastric endocrine cell types. A specific serum generated against amino acids 13-28 of ghrelin was tested on fetal and adult gastric mucosa and compared with ghrelin in situ hybridisation. Immunogold electron microscopy was performed on normal human, rat and dog adult stomach. Ghrelin cells were detected in developing gut, pancreas and lung from gestational week 10 and in adult human, rat and dog gastric mucosa. By immunogold electron microscopy, gastric ghrelin cells showed distinctive morphology and hormone reactivity in respect to histamine enterochromaffin-like, somatostatin D, glucagon A or serotonin enterochromaffin cells. Ghrelin cells were characterised by round, compact, electron-dense secretory granules of P/D(1) type in man (mean diameter 147+/-30 nm), A-like type in the rat (183+/-37 nm) and X type in the dog (273+/-49 nm). It is concluded that, ghrelin is produced by well-defined cell types, which in the past had been labelled differently in various mammals mostly because of the different size of their secretory granule. In man ghrelin cells develop during early fetal life.
Temporal lobe epilepsy (TLE) is frequently associated with hippocampal sclerosis, possibly caused by a primary brain injury that occurred a long time before the appearance of neurological symptoms. This type of epilepsy is characterized by refractoriness to drug treatment, so to require surgical resection of mesial temporal regions involved in seizure onset. Even this last therapeutic approach may fail in giving relief to patients. Although prevention of hippocampal damage and epileptogenesis after a primary event could be a key innovative approach to TLE, the lack of clear data on the pathophysiological mechanisms leading to TLE does not allow any rational therapy. Here we address the current knowledge on mechanisms supposed to be involved in epileptogenesis, as well as on the possible innovative treatments that may lead to a preventive approach. Besides loss of principal neurons and of specific interneurons, network rearrangement caused by axonal sprouting and neurogenesis are well known phenomena that are integrated by changes in receptor and channel functioning and modifications in other cellular components. In particular, a growing body of evidence from the study of animal models suggests that disruption of vascular and astrocytic components of the blood-brain barrier takes place in injured brain regions such as the hippocampus and piriform cortex. These events may be counteracted by drugs able to prevent damage to the vascular component, as in the case of the growth hormone secretagogue ghrelin and its analogues. A thoroughly investigation on these new pharmacological tools may lead to design effective preventive therapies.
Ghrelin, the endogenous ligand for GH secretagogue receptors, has been reported to influence acid gastric secretion and motility, but its potential gastroprotective effect is unknown. The aims of this study were 1) to examine the effects of central and peripheral administration of ghrelin on ethanol-induced gastric ulcers in conscious rats, and 2) to investigate the possible roles of nitric oxide (NO), vagal nerve, and sensory fibers in the gastric effects of ghrelin. Ghrelin was administered either intracerebroventricularly or sc 30 min before ethanol, and mucosal lesions were examined macroscopically. Additionally, rats were either treated with the inhibitor of NO synthesis N(omega)-nitro-L-arginine methyl ester (L-NAME) or underwent bilateral cervical vagotomy or capsaicin-induced sensory denervation. Conventional histology and immunohistochemistry for ghrelin, gastrin, and somatostatin were performed on gastric specimens from representative rats. Central ghrelin (4-4,000 ng/rat) dose-dependently reduced ethanol-induced gastric ulcers by 39-77%. Subcutaneous ghrelin administration (80 micro g/kg) reduced ulcer depth only. L-NAME and capsaicin, but not vagotomy, prevented the gastroprotective effect of central ghrelin (4000 ng/rat). This is the first evidence that ghrelin exerts a potent central gastroprotective activity against ethanol-induced lesions. The gastroprotective effect of ghrelin is mediated by endogenous NO release and requires the integrity of sensory nerve fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.