Affected mutation carriers with CTLA-4 insufficiency can present in any medical specialty. Family members should be counseled because disease manifestation can occur as late as 50 years of age. EBV- and cytomegalovirus-associated complications must be closely monitored. Treatment interventions should be coordinated in clinical trials.
Acne vulgaris is potentially a severe skin disease associated with colonization of the pilo-sebaceous unit by the commensal bacterium Propionibacterium acnes and inflammation. P. acnes is considered to contribute to inflammation in acne, but the pathways involved are unclear. Here we reveal a mechanism that regulates inflammatory responses to P. acnes. We show that IL-1β mRNA and the active processed form of IL-1β are abundant in inflammatory acne lesions. Moreover, we identify P. acnes as a trigger of monocyte-macrophage NLRP3-inflammasome activation, IL-1β processing and secretion that is dependent on phagocytosis, lysosomal destabilization, reactive oxygen species, and cellular K+ efflux. In mice, inflammation induced by P. acnes is critically dependent on IL-1β and the NLRP3 inflammasome of myeloid cells. These findings show that the commensal P. acnes-by activating the inflammasome-can trigger an innate immune response in the skin, thus establishing the NLRP3-inflammasome and IL-1β as possible therapeutic targets in acne.
Adaptor protein complex 1 (AP-1) is an evolutionary conserved heterotetramer that promotes vesicular trafficking between the trans-Golgi network and the endosomes. The knockout of most murine AP-1 complex subunits is embryonically lethal, so the identification of human disease-associated alleles has the unique potential to deliver insights into gene function. Here, we report two founder mutations (c.11T>G [p.Phe4Cys] and c.97C>T [p.Arg33Trp]) in AP1S3, the gene encoding AP-1 complex subunit σ1C, in 15 unrelated individuals with a severe autoinflammatory skin disorder known as pustular psoriasis. Because the variants are predicted to destabilize the 3D structure of the AP-1 complex, we generated AP1S3-knockdown cell lines to investigate the consequences of AP-1 deficiency in skin keratinocytes. We found that AP1S3 silencing disrupted the endosomal translocation of the innate pattern-recognition receptor TLR-3 (Toll-like receptor 3) and resulted in a marked inhibition of downstream signaling. These findings identify pustular psoriasis as an autoinflammatory phenotype caused by defects in vesicular trafficking and demonstrate a requirement of AP-1 for Toll-like receptor homeostasis.
The outbreak of the SARS‐CoV‐2‐induced coronavirus disease 2019 (COVID‐19) pandemic re‐shaped doctor‐patient interaction and challenged capacities of healthcare systems. It created many issues around the optimal and safest way to treat complex patients with severe allergic disease. A significant number of the patients are on treatment with biologicals, and clinicians face the challenge to provide optimal care during the pandemic. Uncertainty of the potential risks for these patients is related to the fact that the exact sequence of immunological events during SARS‐CoV‐2 is not known. Severe COVID‐19 patients may experience a “cytokine storm” and associated organ damage characterized by an exaggerated release of pro‐inflammatory type 1 and type 3 cytokines. These inflammatory responses are potentially counteracted by anti‐inflammatory cytokines and type 2 responses. This expert‐based EAACI statement aims to provide guidance on the application of biologicals targeting type 2 inflammation in patients with allergic disease. Currently, there is very little evidence for an enhanced risk of patients with allergic diseases to develop severe COVID‐19. Studies focusing on severe allergic phenotypes are lacking. At present, noninfected patients on biologicals for the treatment of asthma, atopic dermatitis, chronic rhinosinusitis with nasal polyps, or chronic spontaneous urticaria should continue their biologicals targeting type 2 inflammation via self‐application. In case of an active SARS‐CoV‐2 infection, biological treatment needs to be stopped until clinical recovery and SARS‐CoV‐2 negativity is established and treatment with biologicals should be re‐initiated. Maintenance of add‐on therapy and a constant assessment of disease control, apart from acute management, are demanded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.