Theories about the origin of life require chemical pathways that allow formation of life’s key building blocks under prebiotically plausible conditions. Complex molecules like RNA must have originated from small molecules whose reactivity was guided by physico-chemical processes. RNA is constructed from purine and pyrimidine nucleosides, both of which are required for accurate information transfer, and thus Darwinian evolution. Separate pathways to purines and pyrimidines have been reported, but their concurrent syntheses remain a challenge. We report the synthesis of the pyrimidine nucleosides from small molecules and ribose, driven solely by wet-dry cycles. In the presence of phosphate-containing minerals, 5′-mono- and diphosphates also form selectively in one-pot reactions. The pathway is compatible with purine synthesis, allowing the concurrent formation of all Watson-Crick bases.
The molecules of life were created by a continuous physicochemical process on an early Earth. In this hadean environment, chemical transformations were driven by fluctuations of the naturally given physical parameters established for example by wet–dry cycles. These conditions might have allowed for the formation of (self)-replicating RNA as the fundamental biopolymer during chemical evolution. The question of how a complex multistep chemical synthesis of RNA building blocks was possible in such an environment remains unanswered. Here we report that geothermal fields could provide the right setup for establishing wet–dry cycles that allow for the synthesis of RNA nucleosides by continuous synthesis. Our model provides both the canonical and many ubiquitous non-canonical purine nucleosides in parallel by simple changes of physical parameters such as temperature, pH and concentration. The data show that modified nucleosides were potentially formed as competitor molecules. They could in this sense be considered as molecular fossils.
The RNA-world hypothesis assumes that life on Earth started with small RNA molecules that catalyzed their own formation. Vital to this hypothesis is the need for prebiotic routes towards RNA. Contemporary RNA, however, is not only constructed from the four canonical nucleobases (A, C, G, and U), it also contains many chemically modified (noncanonical) bases. A still open question is whether these noncanonical bases were formed in parallel to the canonical bases (chemical origin) or later, when life demanded higher functional diversity (biological origin). Here we show that isocyanates in combination with sodium nitrite establish methylating and carbamoylating reactivity compatible with early Earth conditions. These reactions lead to the formation of methylated and amino acid modified nucleosides that are still extant. Our data provide a plausible scenario for the chemical origin of certain noncanonical bases, which suggests that they are fossils of an early Earth.
Nucleic acid click chemistry was used to prepare a family of chemically modified triplex forming oligonucleotides (TFOs) for application as a new gene‐targeted technology. Azide‐bearing phenanthrene ligands—designed to promote triplex stability and copper binding—were ‘clicked’ to alkyne‐modified parallel TFOs. Using this approach, a library of TFO hybrids was prepared and shown to effectively target purine‐rich genetic elements in vitro. Several of the hybrids provide significant stabilisation toward melting in parallel triplexes (>20 °C) and DNA damage can be triggered upon copper binding in the presence of added reductant. Therefore, the TFO and ‘clicked’ ligands work synergistically to provide sequence‐selectivity to the copper cutting unit which, in turn, confers high stabilisation to the DNA triplex. To extend the boundaries of this hybrid system further, a click chemistry‐based di‐copper binding ligand was developed to accommodate designer ancillary ligands such as DPQ and DPPZ. When this ligand was inserted into a TFO, a dramatic improvement in targeted oxidative cleavage is afforded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.