In Staphylococcus aureus, ClpP proteases were previously shown to be essential for virulence and stress tolerance in strains derived from NCTC8325. Because these strains exhibit a severely reduced activity of the alternative sigma factor, SigB, we here reassessed the role of ClpP in SigB-proficient clinical strains. To this end, clpP was deleted in strains COL, Newman, and SA564, and the strains were characterized phenotypically. The proteomic changes accomplished by the clpP deletion in the different strains were analyzed using the 2-D DIGE technique. The proteomic analyses revealed mostly conserved changes in the protein profiles of the ClpP-deficient strains. Among the strain-specific changes were the up-regulation of prophage proteins that coincided with an increased spontaneous release of prophages and the relatively poorer growth of the clpP mutants in some strain backgrounds. Interestingly, the effect of ClpP on the expression of selected virulence genes was strain-dependent despite the fact that the expression of the global virulence regulators RNAIII, mgrA, sarZ, sarR, and arlRS was similarly changed in all clpP mutants. ClpP affected the expression of sarS in a strain-dependent manner, and we propose that the differential expression of sarS is central to the strain-dependent effect of ClpP on the expression of virulence genes.
Inherited ataxias are characterized by degeneration of the cerebellar structures, which results in progressive motor incoordination. Hereditary ataxias occur in many species, including humans and dogs. Several mutations have been found in humans, but the genetic background has remained elusive in dogs. The Finnish Hound suffers from an early-onset progressive cerebellar ataxia. We have performed clinical, pathological, and genetic studies to describe the disease phenotype and to identify its genetic cause. Neurological examinations on ten affected dogs revealed rapidly progressing generalized cerebellar ataxia, tremors, and failure to thrive. Clinical signs were present by the age of 3 months, and cerebellar shrinkage was detectable through MRI. Pathological and histological examinations indicated cerebellum-restricted neurodegeneration. Marked loss of Purkinje cells was detected in the cerebellar cortex with secondary changes in other cortical layers. A genome-wide association study in a cohort of 31 dogs mapped the ataxia gene to a 1.5 Mb locus on canine chromosome 8 (praw = 1.1×10−7, pgenome = 7.5×10−4). Sequencing of a functional candidate gene, sel-1 suppressor of lin-12-like (SEL1L), revealed a homozygous missense mutation, c.1972T>C; p.Ser658Pro, in a highly conserved protein domain. The mutation segregated fully in the recessive pedigree, and a 10% carrier frequency was indicated in a population cohort. SEL1L is a component of the endoplasmic reticulum (ER)–associated protein degradation (ERAD) machinery and has not been previously associated to inherited ataxias. Dysfunctional protein degradation is known to cause ER stress, and we found a significant increase in expression of nine ER stress responsive genes in the cerebellar cortex of affected dogs, supporting the pathogenicity of the mutation. Our study describes the first early-onset neurodegenerative ataxia mutation in dogs, establishes an ERAD–mediated neurodegenerative disease model, and proposes SEL1L as a new candidate gene in progressive childhood ataxias. Furthermore, our results have enabled the development of a genetic test for breeders.
Harmful parasites of the wild northern boreal mammals are still surprisingly poorly studied. In 2003-2006, a peritonitis outbreak caused by the filarioid nematode, Setaria tundra, emerged in Finland's reindeer population. In order to gain knowledge about the basic biology, epidemiology, and transmission dynamics of this parasite, samples for S. tundra were collected from reindeer and other cervids during the follow-up period 2004-2006. Using morphology and molecular biology methods, we describe here S. tundra's first larval stage, microfilaria (smf), for the first time scientifically. The prevalence and densities of smf were higher in reindeer calves than in adults, overall prevalence being 42%. The overall smf prevalences for moose, wild forest reindeer and roe deer were 1.4-1.8%, 23%, and 39%, respectively. The focus of microfilaremia moved north and settled down in the south simultaneously with the peritonitis outbreak. The peak microfilaremia occurred in the first summer after the infection, and smf disappeared from the blood after 2 years. Captive reindeer were smf positive over the year. The prepatent period of S. tundra was estimated to be about 4 months, and the life span at least 14 months. This parasite likely has an important impact on boreal ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.