This paper describes the physics case for a new fixed target facility at CERN SPS. The SHiP (search for hidden particles) experiment is intended to hunt for new physics in the largely unexplored domain of very weakly interacting particles with masses below the Fermi scale, inaccessible to the LHC experiments, and to study tau neutrino physics. The same proton beam setup can be used later to look for decays of tau-leptons with lepton flavour number non-conservation, [Formula: see text] and to search for weakly-interacting sub-GeV dark matter candidates. We discuss the evidence for physics beyond the standard model and describe interactions between new particles and four different portals-scalars, vectors, fermions or axion-like particles. We discuss motivations for different models, manifesting themselves via these interactions, and how they can be probed with the SHiP experiment and present several case studies. The prospects to search for relatively light SUSY and composite particles at SHiP are also discussed. We demonstrate that the SHiP experiment has a unique potential to discover new physics and can directly probe a number of solutions of beyond the standard model puzzles, such as neutrino masses, baryon asymmetry of the Universe, dark matter, and inflation.
The first results on next-to-leading order QCD corrections to production of direct photon pairs in hadronic collisions in the extra dimension models-ADD and RS are presented. Various kinematical distributions are obtained to order α s in QCD by taking into account all the parton level subprocesses. Our Monte Carlo based code incorporates all the experimental cuts suitable for physics studies at the LHC. We estimate the impact of the QCD corrections on various observables and find that they are significant. We also show the reduction in factorisation scale uncertainity when O(α s ) effects are included.
We present a full next-to-leading order (NLO) QCD corrections to diphoton production at the hadron colliders in both standard model and ADD model. The invariant mass and rapidity distributions of the diphotons are obtained using a semi-analytical two cut-off phase space slicing method which allows for a successful numerical implementation of various kinematical cuts used in the experiments. The fragmentation photons are systematically removed using smooth-cone-isolation cuts on the photons. The NLO QCD corrections not only stabilise the perturbative predictions but also enhance the production cross section significantly.
The first results on next-to-leading order QCD corrections to production of two Z bosons in hadronic collisions in the large extra dimension ADD model are presented.Various kinematical distributions are obtained to order α s in QCD by taking into account all the parton level subprocesses. We estimate the impact of the QCD corrections on various observables and find that they are significant. We also show the reduction in factorization scale uncertainty when O(α s ) effects are included.
Correlators of Wilson-line operators are fundamental ingredients for the study of the infrared properties of non-abelian gauge theories. In perturbation theory, they are known to exponentiate, and their logarithm can be organised in terms of collections of Feynman diagrams called webs. We study the classification of webs to high perturbative orders, proposing a set of tools to generate them recursively: in particular, we introduce the concept of Cweb, or correlator web, which is a set of skeleton diagrams built with connected gluon correlators, instead of individual Feynman diagrams. As an application, we enumerate all Cwebs entering the soft anomalous dimension matrix for multi-parton scattering amplitudes at four loops, and we compute the mixing matrices for all Cwebs connecting four or five Wilson lines at that loop order, verifying that they obey sum rules that were derived or conjectured in the literature. Our results provide the colour building blocks for the calculation of the soft anomalous dimension matrix at four-loop order.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.