We report the near-infrared radial velocity (RV) discovery of a super-Earth planet on a 10.77 d orbit around the M4.5 dwarf Ross 508 (Jmag = 9.1). Using precision RVs from the Subaru Telescope IRD (InfraRed Doppler) instrument, we derive a semi-amplitude of $3.92^{+0.60}_{-0.58}\:\mbox{m}\:{\mbox{s}^{-1}}$, corresponding to a planet with a minimum mass $m \sin i = 4.00^{+0.53}_{-0.55}\, M_{\oplus }$. We find no evidence of significant signals at the detected period in spectroscopic stellar activity indicators or MEarth photometry. The planet, Ross 508 b, has a semi-major axis of $0.05366^{+0.00056}_{-0.00049}\:$au. This gives an orbit-averaged insolation of ≈1.4 times the Earth’s value, placing Ross 508 b near the inner edge of its star’s habitable zone. We have explored the possibility that the planet has a high eccentricity and its host is accompanied by an additional unconfirmed companion on a wide orbit. Our discovery demonstrates that the near-infrared RV search can play a crucial role in finding a low-mass planet around cool M dwarfs like Ross 508.
We report the first measurement of the zodiacal light (ZL) polarization spectrum in the near-infrared between 0.8 and 1.8 μm. Using the low-resolution spectrometer on board the Cosmic Infrared Background Experiment, calibrated for absolute spectrophotometry and spectropolarimetry, we acquire long-slit polarization spectral images of the total diffuse sky brightness toward five fields. To extract the ZL spectrum, we subtract the contribution of other diffuse radiation, such as the diffuse galactic light, the integrated starlight, and the extragalactic background light. The measured ZL polarization spectrum shows little wavelength dependence in the near-infrared, and the degree of polarization clearly varies as a function of the ecliptic coordinates and solar elongation. Among the observed fields, the North Ecliptic Pole shows the maximum degree of polarization of ∼20%, which is consistent with an earlier observation from the Diffuse Infrared Background Experiment on board on the Cosmic Background Explorer. The measured degree of polarization and its solar elongation dependence are reproduced by an empirical scattering model in the visible band and also by a Mie scattering model for large absorptive particles, while a Rayleigh scattering model is ruled out. All of our results suggest that the interplanetary dust is dominated by large particles.
We report observation of isotropic interplanetary dust (IPD) by analyzing the infrared (IR) maps of the Diffuse Infrared Background Experiment (DIRBE) on board the Cosmic Background Explorer (COBE) spacecraft. To search for the isotropic IPD, we perform new analysis in terms of the solar elongation angle (ϵ), because we expect the zodiacal light (ZL) intensity from the isotropic IPD to decrease as a function of ϵ. We use the DIRBE weekly averaged maps covering 64° ≲ ϵ ≲ 124° and inspect the ϵ dependence of residual intensity after subtracting conventional ZL components. We find the ϵ dependence of the residuals, indicating the presence of the isotropic IPD. However, the mid-IR ϵ dependence is different from that of the isotropic IPD model at ϵ ≳ 90°, where the residual intensity increases as a function of ϵ. To explain the observed ϵ dependence, we assume a spheroidal IPD cloud showing higher density farther away from the Sun. We estimate the intensity of the near-IR extragalactic background light (EBL) by subtracting the spheroidal component, assuming the spectral energy distribution from the residual brightness at 12 μm. The EBL intensity is derived as , , and at 1.25, 2.2, and 3.5 μm, respectively. The EBL is still a few times larger than the integrated light of normal galaxies, suggesting the existence of unaccounted-for extragalactic sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.