We examined the utility of 13 pharmaceuticals and personal care products (PPCPs) as molecular markers of sewage contamination in riverine, groundwater, and coastal environments. The PPCPs were crotamiton, ibuprofen, naproxen, ketoprofen, fenoprofen, mefenamic acid, thymol, triclosan, propyphenazone, carbamazepine, diethyltoluamide, ethenzamide, and caffeine. Measurements in 37 Japanese rivers showed positive correlations of riverine flux of crotamiton (r2 = 0.85), carbamazepine (r2 = 0.84), ibuprofen (r2 = 0.73), and mefenamic acid (r2 = 0.67) with the population in the catchments. In three surveys in the Tamagawa estuary, crotamiton, carbamazepine, and mefenamic acid behaved conservatively across seasons within a salinity range of 0.4-29 per thousand, suggesting their utility as molecular markers in coastal environments. Removal of ketoprofen and naproxen in the estuary was ascribed to photodegradation. Ibuprofen and thymol were removed from estuarine waters in summer by microbial degradation. Triclosan was removed by a combination of microbial degradation, photodegradation, and adsorption. These results were consistent with those of river water incubated for 8 d at 25 degrees C in the dark in order to examine the effects of biodegradation and photodegradation. Crotamiton was detected in groundwater from the Tokyo metropolitan area (12 out of 14 samples), suggesting wastewater leakage from decrepit sewers. Carbamazepine, ketoprofen, and ibuprofen (5/14), caffeine (4/14), and diethyltoluamide (3/14) were also detected in the groundwater, whereas the other carboxylic and phenolic PPCPs were not detected and were thought to be removed during their passage through soil. All the data demonstrated the utility of crotamiton and carbamazepine as conservative markers in freshwater and coastal environments. We recommend combining these conservative markers with labile PPCPs to detect inputs of poorly treated sewage.
We analyzed perfluorinated surfactants (PFSs) in 20 river samples and 5 wastewater secondary effluent samples in Japan to reveal their occurrence and sources. Nine PFS species were determined: perfluorooctanesulfonate (PFOS), perfluorooctane sulfonamide (FOSA), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUA), perfluorododecanoate (PFDDA), and perfluorotridecanoate (PFTDA). PFSs were detected in all rivers, revealing nationwide contamination of rivers. In particular, 11 out of 20 river samples exceeded New Jersey guidance for PFOA in drinking water (40 ng/L). PFOS, PFHpA, PFOA, and PFNA were major species in Japan. Concentrations of PFOS, PFHpA, and PFNA in rivers were strongly correlated with population density, suggesting that the chemicals were derived from urban activities. PFOA showed a significant but weak correlation. We used crotamiton, a marker of sewage effluent, for further source analysis. Concentrations of PFOS, PFHpA, and PFNAwere strongly correlated with those of crotamiton, and plots of secondary effluents fell near the regression lines of rivers, indicating that the PFOS, PFHpA, and PFNA in rivers were derived from sewage effluent. On the other hand, PFOA was found at remarkably high levels (54-192 ng/L) in seven river samples containing low levels of crotamiton, suggesting that it was derived from nonsewage point sources, as well as sewage effluent. The total fluxes of sewage-derived PFOS, PFHpA, PFOA, and PFNA from Japan were estimated to be 3.6, 2.6, 5.6, and 2.6 t/year, respectively. This is the first report to identify PFOA in several rivers, derived from nonsewage point sources, by using a marker of sewage effluent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.