Pressure and target voltage driven discharge runaway from low to high discharge current density regimes in high power impulse magnetron sputtering of carbon is investigated. The main purpose is to provide a meaningful insight of the discharge dynamics, with the ultimate goal to establish a correlation between discharge properties and process parameters to control the film growth. This is achieved by examining a wide range of pressures (2–20 mTorr) and target voltages (700–850 V) and measuring ion saturation current density at the substrate position. We show that the minimum plasma impedance is an important parameter identifying the discharge transition as well as establishing a stable operating condition. Using the formalism of generalized recycling model, we introduce a new parameter, ‘recycling ratio’, to quantify the process gas recycling for specific process conditions. The model takes into account the ion flux to the target, the amount of gas available, and the amount of gas required for sustaining the discharge. We show that this parameter describes the relation between the gas recycling and the discharge current density. As a test case, we discuss the pressure and voltage driven transitions by changing the gas composition when adding Ne into the discharge. We propose that standard Ar HiPIMS discharges operated with significant gas recycling do not require Ne to increase the carbon ionization.
High power impulse magnetron sputtering (HiPIMS) of diamond-like carbon coatings is reviewed. Three variations of HiPIMS were used to deposit diamond-like carbon coatings: use of neon as compared to argon for sputtering, very high discharge peak current density in an Ar atmosphere, and the use of bursts of short sputtering pulses. All three variations were able to provide sufficient ion-to-neutral ratios to effectively control the coating quality using substrate bias. The resulting coatings are typically smooth, amorphous, hard (up to 25 GPa), and dense but have low stress (below 2.5 GPa). The coatings exhibit an increased stability at higher temperature (up to 500 °C) compared to the coatings prepared using standard magnetron sputtering. The resulting coatings also exhibited low wear rates in ambient ball-on-disc tests (2.1 × 10−8 mm3 N−1 m−1). These improvements are explained in terms of the rate of sputtered carbon atom ionization in the plasma and material transport to the substrate. However, the chemical bonding in the films is not yet well understood as relatively low sp3 bond content has been observed.
In this work, (Ba0.75Sr0.25) (Ti0.95Co0.05) O3 perovskite nanostructured material, denoted subsequently as Co-doped BaSrTiO3, was synthesized in a one-step process in hydrothermal conditions. The obtained powder was heat-treated at 800 °C and 1000 °C, respectively, in order to study nanostructured powder behavior during thermal treatment. The Co-doped BaSrTiO3 powder was pressed into pellets of 5.08 cm (2 inches) then used for thin film deposition onto commercial Al2O3 substrates by RF sputtering method. The microstructural, thermal, and gas sensing properties were investigated. The electrical and thermodynamic characterization allowed the evaluation of thermodynamic stability and the correlation of structural features with the sensing properties revealed under real operating conditions. The sensing behavior with respect to the temperature range between 23 and 400 °C, for a fixed CO2 concentration of 3000 ppm, highlighted specific differences between Co-doped BaSrTiO3 treated at 800 °C compared to that treated at 1000 °C. The influence of the relative humidity level on the CO2 concentrations and the other potential interfering gases was also analyzed. Two possible mechanisms for CO2 interaction were then proposed. The simple and low-cost technology, together with the high sensitivity when operating at room temperature corresponding to low power consumption, suggests that Co-doped BaSrTiO3 has a good potential for use in developing portable CO2 detectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.