Early administration of amiodarone did not improve ROSC or 48-h survival rates, and was associated with worse haemodynamics in this swine model of cardiac arrest.
Inflammation-associated oxidative stress contributes to hepatic ischemia/reperfusion injury (IRI). Detrimental inflammatory event cascades largely depend on activated Kupffer cells (KCs) and neutrophils, as well as proinflammatory cytokines, including tumor necrosis factor α (TNF-α) and interleukin (IL) 18. The aim of our study was to evaluate the effects of IL 18 binding protein (IL 18Bp) in hepatic IRI of mice. Thirty C57BL/6 mice were allocated into 3 groups: sham operation, ischemia/reperfusion (I/R), and I/R with intravenous administration of IL 18Bp. Hepatic ischemia was induced for 30 minutes by Pringle's maneuver. After 120 minutes of reperfusion, mice were euthanized, and the liver and blood samples were collected for histological, immunohistochemical, molecular, and biochemical analyses. I/R injury induced the typical liver pathology and upregulated IL-18 expression in the liver of mice. Binding of IL 18 with IL 18Bp significantly reduced the histopathological indices of I/R liver injury and KC apoptosis. The I/R-induced increase of TNF-α, malondialdehyde, aspartate aminotransferase, and alanine aminotransferase levels was prevented in statistically significant levels because of the pretreatment with IL 18Bp. Likewise, blocking of IL 18 ablated the I/R-associated elevation of nuclear factor kappa B, c-Jun, myeloperoxidase, and IL 32 and the up-regulation of neutrophils and T-helper lymphocytes. Administration of IL 18Bp protects the mice liver from I/R injury by intervening in critical inflammation-associated pathways and KC apoptosis.
Hepatic steatosis and IRI after major liver surgery largely affect morbidity and mortality. Intermittent IPC, 24 hours before IRI and extensive hepatectomy, presents higher 30-day survival and improved liver function parameters.
Abstract. Recent evidence has suggested that downregulation of the Wnt/β-catenin signaling pathway may contribute to the development and growth of HCC. Consequently, elements of this pathway have begun to emerge as potential targets for improving outcomes of anti-HCC. Thus, the present study sought to examine the effects of Wnt-1 blockade using the classical diethylnitrosamine (DEN)-induced chemical carcinogenesis mouse model of HCC. The depletion of Wnt-1 using neutralizing antisera was done for ten consecutive days at the age of 9 months and mice were examined for the following 20 days. At that time, DEN-treated mice had multiple variably-sized hepatic cell adenomas. Anti-Wnt-1 was particularly potent in suppressing the expression of critical elements of the Wnt/β-catenin signaling pathway, such as β-catenin and Frizzled-1 receptor, however, not Dickkopf-related protein 1. This effect co-existed with the suppression of Cyclin D1, FOXM1, NF-κΒ and c-Jun commensurate with proliferation and apoptosis blockade in hepatocellular adenomas, and reduced Bcl-2 and c-Met in the serum of mice. Nonetheless, tumor size and multiplicity were found to be unaffected, suggesting that apoptosis may be equally important to proliferation in the context of counteracting DEN induced hepatocellular adenomas of mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.