When silicon strip and slot waveguides are coated with a 50 nm amorphous titanium dioxide (TiO2) film, measured losses at a wavelength of 1.55 μm can be as low as (2 ± 1)dB/cm and (7 ± 2)dB/cm, respectively. We use atomic layer deposition (ALD), estimate the effect of ALD growth on the surface roughness, and discuss the effect on the scattering losses. Because the gap between the rails of a slot waveguide narrows by the TiO2 deposition, the effective slot width can be back-end controlled. This is useful for precise adjustment if the slot is to be filled with, e. g., a nonlinear organic material or with a sensitizer for sensors applications.
We demonstrate low-loss silicon slot waveguides patterned with 248 nm deep-UV lithography and filled with atomic layer deposited aluminum oxide. Propagation losses less than 5 dB/cm are achieved with the waveguides. The devices are fabricated using low-temperature CMOS compatible processes. We also demonstrate simple, compact and efficient strip-to-slot waveguide couplers. With a coupler as short as 10 µm, coupling loss is less than 0.15 dB. The low-index and low-nonlinearity filling material allows nonlinearities nearly two orders of magnitude smaller than in silicon waveguides. Therefore, these waveguides are a good candidate for linear photonic devices on the silicon platform, and for distortion-free signal transmission channels between different parts of a silicon all-optical chip. The low-nonlinearity slot waveguides and robust couplers also facilitate a 50-fold local change of the waveguide nonlinearity within the chip by a simple mask design.
We demonstrate good optical quality TiO(2) thin films grown by atomic layer deposition at 120 degrees C. The optical properties were studied using spectroscopic ellipsometry and prism coupling methods. The refractive index was 2.27, and the slab waveguide propagation loss was less than 1dB/cm at 1.53microm. A high quality resonant waveguide grating was fabricated using a thin TiO(2) layer on top of a SiO(2) grating.
We demonstrate that properly designed one-dimensional guided-mode resonance filters (GMRFs) with only one grating layer can exhibit a nonpolarizing resonant filtering effect under normal incidence. A sinusoidal profile nonpolarizing GMRF is realized by photoinduced surface-relief grating formation on thin films of polymer-azobenzene complexes and subsequent atomic layer deposition, showing the feasibility of fabrication of such compact GMRFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.