A large series of 3-carboxamido-7-substituted coumarins have been synthesized and tested in vitro for their human monoamine oxidase A and B (hMAO-A and hMAO-B) inhibitory activity. Taking into account all the relevant structural information on MAOs reported in the literature, we made some changes in the coumarin nucleus and examined with particular attention the effect on activity and selectivity of substituting at position 3 with N-aryl or N-alkyl carboxamide and at position 7 with a benzyloxy or a 4'-F-benzyloxy group. Some of the assayed compounds proved to be potent, selective inhibitors of hMAO-B with IC(50) values in the micromolar range. To better understand the enzyme-inhibitor interaction and to explain the selectivity of the most active compounds toward hMAOs, molecular modeling studies were carried out on new, high resolution, hMAO-A and hMAO-B crystallographic structures.
Acetylation is a key modulator of genome accessibility through decondensation of the chromatin structure. The balance between acetylation and opposite deacetylation is, in fact, a prerequisite for several cell functions and differentiation. To find modulators of the histone acetyltransferase Gcn5p, we performed a phenotypic screening on a set of newly synthesized molecules derived from thiazole in budding yeast Saccharomyces cerevisiae. We selected compounds that induce growth inhibition in yeast strains deleted in genes encoding known histone acetyltransferases. A novel molecule CPTH2, cyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl)hydrazone, was selected based on its inhibitory effect on the growth of a gcn5Delta strain. We demonstrated a specific chemical-genetic interaction between CPTH2 and HAT Gcn5p, indicating that CPTH2 inhibits the Gcn5p dependent functional network. CPTH2 inhibited an in vitro HAT reaction, which is reverted by increasing concentration of histone H3. In vivo, it decreased acetylation of bulk histone H3 at the specific H3-AcK14 site. On the whole, our results demonstrate that CPTH2 is a novel HAT inhibitor modulating Gcn5p network in vitro and in vivo.
A series of 2-methylcyclohexylidene-(4-arylthiazol-2-yl)hydrazones have been investigated for their ability to inhibit selectively the activity of the human A and B isoforms of monoamine oxidase (MAO). The target compounds, which present a stereogenic center on the cyclohexane ring, were obtained as pure (R) and (S) enantiomers by enantioselective HPLC. The absolute configuration of homochiral forms isolated on a semipreparative scale was obtained by a combined strategy based on chemical correlation and single-crystal X-ray diffraction. All compounds showed higher activity against the human MAO-B isoform with IC50 values ranging between 26.81 +/- 2.74 microM and 14.20 +/- 0.26 nM, and the assays carried out on the pure enantiomers showed higher activity for the (R) form. A computational study was performed by molecular mechanics, DFT-based quantomechanics, and docking techniques on the most active and human MAO-B selective inhibitor 8.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.