Background Deletion of the recurrent ~600 kb BP4-BP5 chromosomal region 16p11.2 has been associated with a wide range of neurodevelopmental outcomes. Method To clarify the phenotype of 16p11.2 deletion, we examined psychiatric and developmental presentation of predominantly clinically referred individuals, with a particular emphasis on broader autism phenotype characteristics in individuals with recurrent ~600 kb chromosome 16p11.2 deletions. 85 Individuals with the 16p11.2 deletion, and 153 familial controls, were evaluated for symptom presentation and clinical diagnosis using an extensive standardized assessment battery across 3 clinical sites. Results Individuals with the 16p11.2 deletion presented with a high frequency of psychiatric and developmental disorders (>90%). The most commonly diagnosed conditions were developmental coordination disorder, phonological processing disorder, expressive and receptive language disorders (71% of individuals over 3 years of age with a speech and language related disorder), and autism spectrum disorder (ASD). Individuals with the 16p11.2 deletion not meeting diagnostic criteria for ASD had significantly higher prevalence of autism-related characteristics compared to the familial non-carrier control group. Individuals with the 16p11.2 deletion had a range of intellectual ability, but IQ scores were 26 points lower than non-carrier family members on average. Conclusion Clinically referred individuals with the 16p11.2 deletion have high rates of psychiatric and developmental disorders and provide a genetically well-defined group to study the emergence of developmental difficulties, particularly those associated with the broader autism phenotype.
Purpose:To characterize the clinical phenotype of the recurrent copy-number variation (CNV) at 1q21.1, we assessed the psychiatric and medical phenotypes of 1q21.1 deletion and duplication carriers ascertained through clinical genetic testing and family member cascade testing, with particular emphasis on dimensional assessment across multiple functional domains. Methods:Nineteen individuals with 1q21.1 deletion, 19 individuals with the duplication, and 23 familial controls (noncarrier siblings and parents) spanning early childhood through adulthood were evaluated for psychiatric, neurologic, and other medical diagnoses, and their cognitive, adaptive, language, motor, and neurologic domains were also assessed. Twenty-eight individuals with 1q21.1 CNVs (15 deletion, 13 duplication) underwent structural magnetic resonance brain imaging.Results: Probands with 1q21.1 CNVs presented with a range of psychiatric, neurologic, and medical disorders. Deletion and duplication carriers shared several features, including borderline cognitive functioning, impaired fine and gross motor functioning, articulation abnormalities, and hypotonia. Increased frequency of Autism Spectrum Disorder (ASD) diagnosis, increased ASD symptom severity, and increased prevalence of macrocephaly were observed in the duplication relative to deletion carriers, whereas reciprocally increased prevalence of microcephaly was observed in the deletion carriers.Conclusions: Individuals with 1q21.1 deletions or duplications exhibit consistent deficits on motor and cognitive functioning and abnormalities in head circumference.
BackgroundHaploinsufficiency of the forkhead-box protein P1 (FOXP1) gene leads to a neurodevelopmental disorder termed FOXP1 syndrome. Previous studies in individuals carrying FOXP1 mutations and deletions have described the presence of autism spectrum disorder (ASD) traits, intellectual disability, language impairment, and psychiatric features. The goal of the present study was to comprehensively characterize the genetic and clinical spectrum of FOXP1 syndrome. This is the first study to prospectively examine the genotype-phenotype relationship in multiple individuals with FOXP1 syndrome, using a battery of standardized clinical assessments.MethodsGenetic and clinical data was obtained and analyzed from nine children and adolescents between the ages of 5–17 with mutations in FOXP1. Phenotypic characterization included gold standard ASD testing and norm-referenced measures of cognition, adaptive behavior, language, motor, and visual-motor integration skills. In addition, psychiatric, medical, neurological, and dysmorphology examinations were completed by a multidisciplinary team of clinicians. A comprehensive review of reported cases was also performed. All missense and in-frame mutations were mapped onto the three-dimensional structure of DNA-bound FOXP1.ResultsWe have identified nine de novo mutations, including three frameshift, one nonsense, one mutation in an essential splice site resulting in frameshift and insertion of a premature stop codon, three missense, and one in-frame deletion. Reviewing prior literature, we found seven instances of recurrent mutations and another 34 private mutations. The majority of pathogenic missense and in-frame mutations, including all four missense mutations in our cohort, lie in the DNA-binding domain. Through structural analyses, we show that the mutations perturb amino acids necessary for binding to the DNA or interfere with the domain swapping that mediates FOXP1 dimerization. Individuals with FOXP1 syndrome presented with delays in early motor and language milestones, language impairment (expressive language > receptive language), ASD symptoms, visual-motor integration deficits, and complex psychiatric presentations characterized by anxiety, obsessive-compulsive traits, attention deficits, and externalizing symptoms. Medical features included non-specific structural brain abnormalities and dysmorphic features, endocrine and gastrointestinal problems, sleep disturbances, and sinopulmonary infections.ConclusionsThis study identifies novel FOXP1 mutations associated with FOXP1 syndrome, identifies recurrent mutations, and demonstrates significant clustering of missense mutations in the DNA-binding domain. Clinical findings confirm the role FOXP1 plays in development across multiple domains of functioning. The genetic findings can be incorporated into clinical genetics practice to improve accurate genetic diagnosis of FOXP1 syndrome and the clinical findings can inform monitoring and treatment of individuals with FOXP1 syndrome.Electronic supplementary materialThe online ver...
BACKGROUND: 16p11.2 breakpoint 4 to 5 copy number variants (CNVs) increase the risk for developing autism spectrum disorder, schizophrenia, and language and cognitive impairment. In this multisite study, we aimed to quantify the effect of 16p11.2 CNVs on brain structure. METHODS: Using voxel-and surface-based brain morphometric methods, we analyzed structural magnetic resonance imaging collected at seven sites from 78 individuals with a deletion, 71 individuals with a duplication, and 212 individuals without a CNV. RESULTS: Beyond the 16p11.2-related mirror effect on global brain morphometry, we observe regional mirror differences in the insula (deletion . control . duplication). Other regions are preferentially affected by either the deletion or the duplication: the calcarine cortex and transverse temporal gyrus (deletion . control; Cohen's d . 1), the superior and middle temporal gyri (deletion , control; Cohen's d , 21), and the caudate and hippocampus (control . duplication; 20.5 . Cohen's d . 21). Measures of cognition, language, and social responsiveness and the presence of psychiatric diagnoses do not influence these results. CONCLUSIONS: The global and regional effects on brain morphometry due to 16p11.2 CNVs generalize across site, computational method, age, and sex. Effect sizes on neuroimaging and cognitive traits are comparable. Findings partially overlap with results of meta-analyses performed across psychiatric disorders. However, the lack of correlation between morphometric and clinical measures suggests that CNV-associated brain changes contribute to clinical manifestations but require additional factors for the development of the disorder. These findings highlight the power of genetic risk factors as a complement to studying groups defined by behavioral criteria. Autism spectrum disorder (ASD) and related neurodevelopmental disorders are defined behaviorally and characterized by a significant clinical and etiologic heterogeneity. As a consequence, investigating ASD under the assumption of an underlying homogeneous condition has resulted in controversial findings in the field of neuroimaging (1). Increased brain growth early in development (2-4) and alterations of many regional brain volumes (5) have been implicated in ASD, but results have proven difficult to replicate (1,(6)(7)(8).To mitigate some of these issues, cohorts of individuals with shared genetic risk factors have been assembled to minimize the noise introduced by etiologic and biological heterogeneity (9). Such a "genetic-first" study design provides the opportunity to investigate a given neurodevelopmental risk (and associated mechanism) shared by individuals who carry the same genetic etiology irrespective of the psychiatric diagnosis.Copy number variants (CNVs) at the 16p11.2 (breakpoints 4-5, 29.6-30.2 Mb-hg19) (10) are among the most frequent risk factors for neurodevelopmental and psychiatric conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.