The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8-1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z > 1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10 9 M to z ≈ 2, reaching the knee of the ultraviolet luminosity function of galaxies to z ≈ 8. The survey covers approximately 800 arcmin 2 and is divided into two parts. The CANDELS/Deep survey (5σ point-source limit H = 27.7 mag) covers ∼125 arcmin 2 within Great Observatories Origins Deep Survey (GOODS)-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (Extended Groth Strip, COSMOS, and Ultra-deep Survey) and covers the full area to a 5σ pointsource limit of H 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered "wedding-cake" approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.
This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black holes at z ∼ 1.5 − 8, and to study Type Ia SNe beyond z > 1.5. Five premier multi-wavelength sky regions are selected, each with extensive multiwavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 / infrared channel (WFC3/IR) and UVIS channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers ∼ 125 square arcminutes within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of ∼ 800 square arcminutes across GOODS and three additional fields (EGS, COSMOS, and UDS). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up to date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including CTE degradation for ACS, removal of electronic bias-striping present in ACS data after SM4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.
The 3D-HST and CANDELS programs have provided WFC3 and ACS spectroscopy and photometry over ≈ 900 arcmin 2 in five fields: AEGIS, COSMOS, GOODS-North, GOODS-South, and the UKIDSS UDS field. All these fields have a wealth of publicly available imaging datasets in addition to the HST data, which makes it possible to construct the spectral energy distributions (SEDs) of objects over a wide wavelength range. In this paper we describe a photometric analysis of the CANDELS and 3D-HST HST imaging and the ancillary imaging data at wavelengths 0.3 µm -8 µm. Objects were selected in the WFC3 near-IR bands, and their SEDs were determined by carefully taking the effects of the point spread function in each observation into account. A total of 147 distinct imaging datasets were used in the analysis. The photometry is made available in the form of six catalogs: one for each field, as well as a master catalog containing all objects in the entire survey. We also provide derived data products: photometric redshifts, determined with the EAZY code, and stellar population parameters determined with the FAST code. We make all the imaging data that were used in the analysis available, including our reductions of the WFC3 imaging in all five fields. 3D-HST is a spectroscopic survey with the WFC3 and ACS grisms, and the photometric catalogs presented here constitute a necessary first step in the analysis of these grism data. All the data presented in this paper are available through the 3D-HST website. 16
The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit multi-cycle treasury program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of structure formation models. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, twenty CLASH clusters are solely X-ray selected. The X-ray selected clusters are massive (kT > 5 keV) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (θ Ein > 35 at z s = 2) to optimize the likelihood of finding highly magnified high-z (z > 7) galaxies. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (σ z ∼ 0.02(1+z)) photometric redshifts for newly discovered arcs. Observations of each cluster are spread over 8 epochs to enable a search for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of supernovae. We present newly re-derived X-ray luminosities, temperatures, and Fe abundances for the CLASH clusters as well as a representative source list for MACS1149.6+2223 (z = 0.544).
We explore the redshift evolution of the specific star formation rate (SSFR) for galaxies of different stellar mass by drawing on a deep 3.6 µm-selected sample of > 10 5 galaxies in the 2 deg 2 COSMOS field. The average star formation rate (SFR) for sub-sets of these galaxies is estimated with stacked 1.4 GHz radio continuum emission. We separately consider the total sample and a subset of galaxies that shows evidence for substantive recent star formation in the rest-frame optical spectral energy distributions. At redshifts 0.2 < z < 3 both populations show a strong and mass-independent decrease in their SSFR towards the present epoch. It is best described by a power-law (1 + z) n , where n ∼ 4.3 for all galaxies and n ∼ 3.5 for star forming (SF) sources. The decrease appears to have started at z > 2, at least for high-mass (M * 4 × 10 10 M ⊙ ) systems where our conclusions are most robust. Our data show that there is a tight correlation with power-law dependence, SSFR ∝ M * β , between SSFR and stellar mass at all epochs. The relation tends to flatten below M * ≈ 10 10 M ⊙ if quiescent galaxies are included; if they are excluded from the analysis a shallow index β SFG ≈ −0.4 fits the correlation. On average, higher mass objects always have lower SSFRs, also among SF galaxies. At z > 1.5 there is tentative evidence for an upper threshold in SSFR that an average galaxy cannot exceed, possibly due to gravitationally limited molecular gas accretion. It is suggested by a flattening of the SSFR-M * relation (also for SF sources), but affects massive (> 10 10 M ⊙ ) galaxies only at the highest redshifts. Since z = 1.5 there thus is no direct evidence that galaxies of higher mass experience a more rapid waning of their SSFR than lower mass SF systems. In this sense, the data rule out any strong 'downsizing' in the SSFR. We combine our results with recent measurements of the galaxy (stellar) mass function in order to determine the characteristic mass of a SF galaxy: we find that since z ∼ 3 the majority of all new stars were always formed in galaxies of M * = 10 10.6±0.4 M ⊙ . In this sense, too, there is no 'downsizing'. Finally, our analysis constitutes the most extensive SFR density determination with a single technique out to z = 3. Recent Herschel results are consistent with our results, but rely on far smaller samples.Note. -Median stacking-based average 1.4 GHz radio flux densities and derived average quantities for all our bins in mass and redshift for star forming systems within our mass-selected sample. For details see caption of Tab. 2. † Mass bin contains data below the limit of mass representativeness and yields an upper limit to the average SFR (see Sec. 2.6 for further details.) ⋆ First mass bin above the limit of representativeness (see Sec. 2.6) which contains a low fraction (< 15 %) of optically faint objects with m AB (i + ) ≥ 25.5 for which the photo-z accuracy is degraded (see Sec. 2.2 for further details). The average SFR measured in this bin might be slightly overestimated towards higher values (se...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.