5-FU-induced gastrointestinal dysmotility outlasts intestinal mucositis.
Spinal cord injury (SCI) leads to profound haemodynamic changes. Constant outflows from the central autonomic pattern generators modulate the activity of the spinal sympathetic neurons. Sudden loss of communication between these centers and the sympathetic neurons in the intermediolateral thoracic and lumbar spinal cord leads to spinal shock. After high SCI, experimental data demonstrated a brief hypertensive peak followed by bradycardia with escape arrhythmias and marked hypotension. Total peripheral resistance and cardiac output decrease, while central venous pressure remains unchanged. The initial hypertensive peak is thought to result from direct sympathetic stimulation during SCI and its presence is anaesthetic agent dependent. Hypotension improves within days in most animal species because of reasons not totally understood, which may include synaptic reorganization or hyper responsiveness of alpha receptors. No convincing data has demonstrated that the deafferented spinal cord can generate significant basal sympathetic activity. However, with the spinal shock resolution, the deafferented spinal cord (in lesions above T6) will generate life-threatening hypertensive bouts with compensatory bradycardia, known as autonomic hyperreflexia (AH) after stimuli such as pain or bladder/colonic distension. AH results from the lack of supraspinal control of the sympathetic neurons and altered neurotransmission (e.g. glutamatergic) within the spinal cord. Despite significant progress in recent years, further research is necessary to fully understand the spectrum of haemodynamic changes after SCI.
Eucalyptol, also known as 1,8-cineole, is a monoterpene traditionally used to treat respiratory disorders due to its secretolytic properties. In addition to its myorelaxant effects, it also has anti-inflammatory actions in vitro. In this study, we aimed to evaluate the efficacy of acute treatment with 1,8-cineole on reducing airway inflammatory parameters. Ovalbumin (OVA)-sensitized guinea pigs were submitted to antigenic challenge (OVA) with or without pre-treatment with a single dose of 1,8-cineole administered by inhalation. Airway inflammatory parameters were reduced or absent in 1,8-cineole-treated animals as compared with untreated guinea pigs. Acute treatment with 1,8-cineole impaired the development of airway hyperresponsiveness to carbachol in isolated tracheal rings. Levels of the pro-inflammatory cytokines TNFa and IL-1b was lower in bronchoalveolar lavage fluid (BALF) of 1,8-cineol-treated guinea pigs than in untreated animals. 1,8-Cineole impaired the OVA-induced increase of the myeloperoxidase activity in BALF. 1,8-Cineole also prevented the reduction of the mucociliary clearance induced by the antigen presentation. The present investigation provides evidence that inhaled 1,8-cineole prevents hyperresponsiveness and inhibits inflammation in airways of ovalbumin-challenged guinea pigs.
1 Nitric oxide (NO) is an important mediator of gastric mucosal defense. Sildenafil (SILD), a cyclic GMP-specific phosphodiesterase inhibitor, promotes an increase in cGMP concentrations in the gastrointestinal tract. cGMP mediates many of the biological actions of NO. 2 We tested the hypothesis that SILD could increase mucosal defense against indomethacin-induced gastropathy in rats. 3 SILD (1, 4 or 10 mg kg À1 , p.o.) pretreatment significantly reduced (Po0.01) the gastric damage and the increase in gastric myeloperoxidase (MPO) activity elicited by indomethacin (20 mg kg À1 p.o.), with the maximal effect at the dose of 10 mg kg À1 . 4 L-NAME (3, 10 or 20 mg kg À1 , i.p.) dose dependently reversed the protective effects of SILD, an effect not seen when L-arginine (L-ARG) (200 mg kg À1 , i.p.) was co-administered with L-NAME. 5 Indomethacin-induced leukocyte adhesion, assessed by intravital microscopy, was decreased (Po0.01) by SILD, and this effect was reversed by L-NAME cotreatment. 6 Indomethacin elicited a decrease in gastric blood flow and in gastric PGE 2 levels. SILD was able to prevent the decrease in gastric blood flow (Po0.01), without diminishing the inhibitory effect of indomethacin on prostaglandin synthesis. 7 These results indicate that SILD, acting via NO-dependent mechanisms, prevents indomethacininduced gastropathy, possibly through a reduction of leukocyte adhesion and maintenance of gastric blood flow.
Physical exercise, mainly after vigorous activity, may induce gastrointestinal dysmotility whose mechanisms are still unknown. We hypothesized that physical exercise and ensuing lactate-related acidemia alter gastrointestinal motor behavior. In the present study, we evaluated the effects of short-term exercise on gastric emptying rate in awake rats subjected to 15-min swimming sessions against a load equivalent to 5% of their body weight. After 0, 10, or 20 min of exercise testing, the rats were gavage fed with 1.5 ml of a liquid test meal (0.5 mg/ml of phenol red in 5% glucose solution) and euthanized 10 min postprandially to measure fractional gastric dye recovery. In addition to inducing acidemia and increasing blood lactate levels, acute exercise increased (P < 0.05) gastric retention. Such a phenomenon presented a positive correlation (P < 0.001) between blood lactate levels and fractional gastric dye recovery. Gastric retention and other acidbase-related changes were all prevented by NaHCO3 pretreatment. Additionally, exercise enhanced (P < 0.05) the marker's progression through the small intestine. In anesthetized rats, exercise increased (P < 0.05) gastric volume, measured by a balloon catheter in a barostat system. Compared with sedentary control rats, acute exercise also inhibited (P < 0.05) the contractility of gastric fundus strips in vitro. In conclusion, acute exercise delayed the gastric emptying of a liquid test meal by interfering with the acid-base balance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.