Large-scale population genomic surveys are essential to explore the phenotypic diversity of natural populations. Here we report the whole-genome sequencing and phenotyping of 1,011 Saccharomyces cerevisiae isolates, which together provide an accurate evolutionary picture of the genomic variants that shape the species-wide phenotypic landscape of this yeast. Genomic analyses support a single 'out-of-China' origin for this species, followed by several independent domestication events. Although domesticated isolates exhibit high variation in ploidy, aneuploidy and genome content, genome evolution in wild isolates is mainly driven by the accumulation of single nucleotide polymorphisms. A common feature is the extensive loss of heterozygosity, which represents an essential source of inter-individual variation in this mainly asexual species. Most of the single nucleotide polymorphisms, including experimentally identified functional polymorphisms, are present at very low frequencies. The largest numbers of variants identified by genome-wide association are copy-number changes, which have a greater phenotypic effect than do single nucleotide polymorphisms. This resource will guide future population genomics and genotype-phenotype studies in this classic model system.The budding yeast S. cerevisiae is a powerful model system for understanding eukaryotic biology at the cellular, molecular and genomic levels 1,2 . S. cerevisiae has recently emerged as a model in population genomics [3][4][5] , because it can be found worldwide in a broad array of human-associated (for example, wine, sake, beer and other fermented beverages) and wild (for example, plant, soil and insect) biotopes. Recent years have seen a spike in the number of published S. cerevisiae genome sequences, which together have revealed a high level of genetic diversity and a complex population structure in this yeast [6][7][8][9][10][11][12] . However, the number of available sequenced genomes from natural isolates remains limited and stands in contrast to the wealth of data on Arabidopsis thaliana 13 and humans 14,15
Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times. With 450 species spread throughout Asia, Europe and America, oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical and modelling approaches have shown that intra-organismal genetic heterogeneity can be selected for and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes. However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.
Roses hold high cultural and economic importance as ornamentals and for the perfume industry. We report the rose whole genome sequencing and assembly and resequencing of major genotypes that contributed to rose domestication. We generated a homozygous genotype from a heterozygous diploid modern roses progenitor, Rosa chinensis ‘Old Blush’. Using Single Molecule Real-Time sequencing and a meta-assembly approach we obtained one of the most complete plant genomes to date. Diversity analyses highlighted the mosaic origin of ‘La France’, one of the first hybrids combining the growth vigor of European species and recurrent blooming of Chinese species. Genomic segments of Chinese ancestry revealed new candidate genes for recurrent blooming. Reconstructing regulatory and secondary metabolism pathways allowed us to propose a model of interconnected regulation of scent and flower color. This genome provides a foundation for understanding the mechanisms governing rose traits and will accelerate improvement in roses, Rosaceae and ornamentals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.