Signaling from endosomes is emerging as a mechanism by which selected receptors provide sustained signals distinct from those generated at the plasma membrane. The activity of natural killer (NK) cells, which are important effectors of innate immunity and regulators of adaptive immunity, is controlled primarily by receptors that are at the cell surface. Here we show that cytokine secretion by resting human NK cells is induced by soluble, but not solid-phase, antibodies to the killer cell immunoglobulin-like receptor (KIR) 2DL4, a receptor for human leukocyte antigen (HLA)-G. KIR2DL4 was constitutively internalized into Rab5-positive compartments via a dynamin-dependent process. Soluble HLA-G was endocytosed into KIR2DL4–containing compartments in NK cells and in 293T cells transfected with KIR2DL4. Chemokine secretion induced by KIR2DL4 transfection into 293T cells occurred only with recombinant forms of KIR2DL4 that trafficked to endosomes. The profile of genes up-regulated by KIR2DL4 engagement on resting NK cells revealed a proinflammatory/proangiogenic response. Soluble HLA-G induced secretion of a similar set of cytokines and chemokines. This unique stimulation of resting NK cells by soluble HLA-G, which is endocytosed by KIR2DL4, implies that NK cells may provide useful functions at sites of HLA-G expression, such as promotion of vascularization in maternal decidua during early pregnancy.
Immunotherapy based on natural killer (NK) cell infusions is a potential adjuvant treatment for many cancers. Such therapeutic application in humans requires large numbers of functional NK cells that have been selected and expanded using clinical grade protocols. We established an extremely efficient cytokine-based culture system for ex vivo expansion of NK cells from hematopoietic stem and progenitor cells from umbilical cord blood (UCB). Systematic refinement of this two-step system using a novel clinical grade medium resulted in a therapeutically applicable cell culture protocol. CD56+CD3− NK cell products could be routinely generated from freshly selected CD34+ UCB cells with a mean expansion of >15,000 fold and a nearly 100% purity. Moreover, our protocol has the capacity to produce more than 3-log NK cell expansion from frozen CD34+ UCB cells. These ex vivo-generated cell products contain NK cell subsets differentially expressing NKG2A and killer immunoglobulin-like receptors. Furthermore, UCB-derived CD56+ NK cells generated by our protocol uniformly express high levels of activating NKG2D and natural cytotoxicity receptors. Functional analysis showed that these ex vivo-generated NK cells efficiently target myeloid leukemia and melanoma tumor cell lines, and mediate cytolysis of primary leukemia cells at low NK-target ratios. Our culture system exemplifies a major breakthrough in producing pure NK cell products from limited numbers of CD34+ cells for cancer immunotherapy.
Older acute myeloid leukemia (AML) patients have a poor prognosis; therefore, novel therapies are needed. Allogeneic natural killer (NK) cells have been adoptively transferred with promising clinical results. Here, we report the first-in-human study exploiting a unique scalable NK-cell product generated from CD34 hematopoietic stem and progenitor cells (HSPC) from partially HLA-matched umbilical cord blood units. Ten older AML patients in morphologic complete remission received an escalating HSPC-NK cell dose (between 3 and 30 × 10/kg body weight) after lymphodepleting chemotherapy without cytokine boosting. HSPC-NK cell products contained a median of 75% highly activated NK cells, with <1 × 10 T cells/kg and <3 × 10 B cells/kg body weight. HSPC-NK cells were well tolerated, and neither graft-versus-host disease nor toxicity was observed. Despite no cytokine boosting being given, transient HSPC-NK cell persistence was clearly found in peripheral blood up to 21% until day 8, which was accompanied by augmented IL15 plasma levels. Moreover, donor chimerism up to 3.5% was found in bone marrow. Interestingly, HSPC-NK cell maturation was observed, indicated by the rapid acquisition of CD16 and KIR expression, while expression of most activating receptors was sustained. Notably, 2 of 4 patients with minimal residual disease (MRD) in bone marrow before infusion became MRD negative (<0.1%), which lasted for 6 months. These findings indicate that HSPC-NK cell adoptive transfer is a promising, potential "off-the-shelf" translational immunotherapy approach in AML. .
The presence of donor‐specific anti‐HLA antibodies (DSAs) is associated with increased risk of graft failure after kidney transplant. We hypothesized that DSAs against HLA class I, class II, or both classes indicate a different risk for graft loss between deceased and living donor transplant. In this study, we investigated the impact of pretransplant DSAs, by using single antigen bead assays, on long‐term graft survival in 3237 deceased and 1487 living donor kidney transplants with a negative complement‐dependent crossmatch. In living donor transplants, we found a limited effect on graft survival of DSAs against class I or II antigens after transplant. Class I and II DSAs combined resulted in decreased 10‐year graft survival (84% to 75%). In contrast, after deceased donor transplant, patients with class I or class II DSAs had a 10‐year graft survival of 59% and 60%, respectively, both significantly lower than the survival for patients without DSAs (76%). The combination of class I and II DSAs resulted in a 10‐year survival of 54% in deceased donor transplants. In conclusion, class I and II DSAs are a clear risk factor for graft loss in deceased donor transplants, while in living donor transplants, class I and II DSAs seem to be associated with an increased risk for graft failure, but this could not be assessed due to their low prevalence.
In contrast to other solid organ transplantations, liver grafts have tolerogenic properties. Animal models indicate that donor leukocytes transferred into the recipient after liver transplantation (LTX) play a relevant role in this tolerogenic phenomenon. However, the specific donor cell types involved in modulation of the recipient alloresponse are not yet defined. We hypothesized that this unique property of liver grafts may be related to their high content of organ-specific natural killer (NK) and CD56 þ T cells. Here, we show that a high proportion of hepatic NK cells that detach from human liver grafts during pretransplant perfusion belong to the CD56bright subset, and are in an activated state (CD69 þ ). Liver NK cells contained perforin and granzymes, exerted stronger cytotoxicity against K562 target cells when compared with blood NK cells, and secreted interferon-c, but no interleukin-10 or T helper 2 cytokines, upon stimulation with monokines. Interestingly, whereas the CD56bright subset is classically considered as noncytolytic, liver CD56bright NK cells showed a high content of cytolytic molecules and degranulated in response to K562 cells. After LTX, but not after renal transplantation, significant numbers of donor CD56dim NK and CD56 þ T cells were detected in the recipient circulation for approximately 2 weeks. In conclusion, during clinical LTX, activated and highly cytotoxic NK cells of donor origin are transferred into the recipient, and a subset of them mixes with the recirculating recipient NK cell pool. The unique properties of the transferred hepatic NK cells may enable them to play a role in regulating the immunological response of the recipient against the graft and therefore contribute to liver tolerogenicity. Liver Transpl 16:895-908, 2010. V C 2010 AASLD.Received December 23, 2009; accepted March 28, 2010. It is generally recognized that after clinical liver transplantation (LTX), the incidence of chronic rejection is lower than after transplantation of other organ grafts. Furthermore, in about 20% of LTX recipients, immunosuppressive therapy can be withdrawn without occurrence of graft rejection.1 Various animal models are spontaneously tolerant to LTX, even though they reject other organs.2,3 Furthermore, cotransplantation of a liver allograft can prevent rejection of other organ grafts from the same donor. 4,5 The mechanisms responsible for this relative tolerogenicity of the liver have only been partially elucidated. A number of observations in animal models indicate that the immune cells present in the liver graft may play a relevant role in the induction of tolerance. With LTX, so-called passenger leukocytes from the donor are transferred into the recipient and can establish a condition of chimerism of variable proportions and duration.6,7 Independent studies from different groups have shown that in rat models,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.