Thalassemia/hemoglobinopathy is a hereditary disease that causes chronic anemia and increased erythropoiesis. Consequently, an expansion of bone marrow spaces may contribute to osteopenia/osteoporosis. However, the pathogenesis of bone changes is not yet known. We, therefore, carried out the study on bone histomorphometry and biochemical and hormonal profiles in children and adolescents with suboptimally treated beta-thalassemia disease with the hope of gaining some new insight into the cellular and structural alterations of thalassemic bone. Seventeen patients underwent iliac crest bone biopsy for histomorphometric analyses. Bone mineral density (BMD) measurements were performed by dual energy x-ray absorptiometry. Most patients had growth retardation and delayed bone age. BMD was low especially at the lumbar spine. Serum IGF-I levels were almost always low. Bone histomorphometry revealed increased osteoid thickness, osteoid maturation time, and mineralization lag time, which indicate impaired bone matrix maturation and defective mineralization. In addition, iron deposits appeared along mineralization fronts and osteoid surfaces. Moreover, focal thickened osteoid seams were found together with focal iron deposits. Dynamic bone formation study revealed reduced bone formation rate. These findings indicate that delayed bone maturation and focal osteomalacia are the pathogenesis of bone disease in suboptimally blood-transfused thalassemics with iron overload. Iron deposits in bone and low circulating IGF-I levels may partly contribute to the above findings.
Patients with undertransfused severe beta-thalassaemia had more bone marrow expansion, lower serum IGF-1 levels and more delayed bone age than did patients with untransfused moderately severe beta-thalassaemia. Therefore, the severity of the disease appeared to be a primary factor for low bone mineral density in undertransfused patients in association with bone age delay and low serum IGF-1.
The 1 μg cosyntropin test could be an adrenal function screening test in thalassemics. However, for definite diagnosis, ITT should be performed in those having peak total cortisol of less than 16 μg/dl after the 1 μg cosyntropin test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.