The widespread introduction of genetic testing in recent years has made it possible to determine that more than a third of cases of pheochromocytomas and paragangliomas (PPPGs) are caused by germline mutations. Despite the variety of catecholamine-producing tumors manifestations, there is a sufficient number of clinical and laboratory landmarks that suggest a hereditary genesis of the disease and even a specific syndrome. These include a family history, age of patient, presence of concomitant conditions, and symptoms of the disease. Considering that each of the mutations is associated with certain diseases that often determine tactics of treatment and examination of a patient, e.g. high risk of various malignancies. Awareness of the practitioner on the peculiarities of the course of family forms of PPPGs will allow improving the tactics of managing these patients.The article provides up-to-date information on the prevalence of hereditary PPPGs. The modern views on the pathogenesis of the disease induced by different mutations are presented. The main hereditary syndromes associated with PPPGs are described, including multiple endocrine neoplasia syndrome type 2A and 2B, type 1 neurofibromatosis, von Hippel-Lindau syndrome, hereditary paraganglioma syndrome, as well as clinical and laboratory features of the tumor in these conditions. The main positions on the necessity of genetic screening in patients with PPPGs are given.
BackgroundThough fine-needle aspiration (FNA) improved the diagnostic methods of thyroid nodules, there are still parts of nodules that cannot be determined according to cytology. In the Bethesda system for reporting thyroid cytopathology, there are two uncertain cytology results. Thanks to the development of next-generation sequencing technology, it is possible to gain the genetic background of pathological tissue efficiently. Therefore, a combination of the cytology and genetic background may enhance the accuracy of diagnosis in thyroid nodules.MethodsDNA from 73 FNA samples of thyroid nodules belonging to different cytology types was extracted and exome sequencing was performed by the ThyroLead panel. Test for BRAF mutation was also performed by ARMS-qPCR. Information including age, sex, preoperative cytology, BRAF mutation status tested by ARMS-qPCR, and surgical pathology was collected in electronic medical record system.ResultsA total of 71 single nucleotide variants, three fusion gene, and two microsatellite instability-high status were detected in 73 FNA samples. BRAF V600E mutation is the most common mutation in these malignant thyroid nodules. After combining the cytology and genetic background detected by next-generation sequencing, the diagnosis sensitivity was increased from 0.582 (95% CI: 0.441–0.711) to 0.855 (95% CI: 0.728–0.930) (P < 0.001) in our group, while the specificity, 1,000 (95% CI: 0.732–1.000) compared to 0.857 (95% CI: 0.562–0.975) (P = 0.25), did not get affected.ConclusionsNext-generation sequencing in thyroid nodules can enhance the preoperative diagnosis sensitivity by fine-needle aspiration alone. It can also provide genetic background for direction of medication. It is possible for clinicians to combine cytology with genetic alterations for a more precise diagnosis strategy of thyroid nodules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.