We describe a reference panel of 64,976 human haplotypes at 39,235,157 SNPs constructed using whole genome sequence data from 20 studies of predominantly European ancestry. Using this resource leads to accurate genotype imputation at minor allele frequencies as low as 0.1%, a large increase in the number of SNPs tested in association studies and can help to discover and refine causal loci. We describe remote server resources that allow researchers to carry out imputation and phasing consistently and efficiently.
Quantifying the impact of heritable epigenetic variation on complex traits is an emerging challenge in population genetics. Here, we analyze a population of isogenic Arabidopsis lines that segregate experimentally induced DNA methylation changes at hundreds of regions across the genome. We demonstrate that several of these differentially methylated regions (DMRs) act as bona fide epigenetic quantitative trait loci (QTL(epi)), accounting for 60 to 90% of the heritability for two complex traits, flowering time and primary root length. These QTL(epi) are reproducible and can be subjected to artificial selection. Many of the experimentally induced DMRs are also variable in natural populations of this species and may thus provide an epigenetic basis for Darwinian evolution independently of DNA sequence changes.
Osteoarthritis is a common complex disease with huge public health burden. Here we perform a genome-wide association study for osteoarthritis using data across 16.5 million variants from the UK Biobank resource. Following replication and meta-analysis in up to 30,727 cases and 297,191 controls, we report 9 new osteoarthritis loci, in all of which the most likely causal variant is non-coding. For three loci, we detect association with biologically-relevant radiographic endophenotypes, and in five signals we identify genes that are differentially expressed in degraded compared to intact articular cartilage from osteoarthritis patients. We establish causal effects for higher body mass index, but not for triglyceride levels or genetic predisposition to type 2 diabetes, on osteoarthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.