Since its first description, the acute respiratory distress syndrome (ARDS) has been acknowledged to be a major clinical problem in respiratory medicine. From July 2015 to July 2016 almost 300 indexed articles were published on ARDS. This review summarises only eight of them as an arbitrary overview of clinical relevance: definition and epidemiology, risk factors, prevention and treatment. A strict application of definition criteria is crucial, but the diverse resource-setting scenarios foster geographic variability and contrasting outcome data. A large international multicentre prospective cohort study including 50 countries across five continents reported that ARDS is underdiagnosed, and there is potential for improvement in its management. Furthermore, epidemiological data from low-income countries suggest that a revision of the current definition of ARDS is needed in order to improve its recognition and global clinical outcome. In addition to the well-known risk-factors for ARDS, exposure to high ozone levels and low vitamin D plasma concentrations were found to be predisposing circumstances. Drug-based preventive strategies remain a major challenge, since two recent trials on aspirin and statins failed to reduce the incidence in atrisk patients. A new disease-modifying therapy is awaited: some recent studies promised to improve the prognosis of ARDS, but mortality and disabling complications are still high in survivors in intensive care. Definition and epidemiologySince its first description by ASHBAUGH et al. [1] in 1967, the acute respiratory distress syndrome (ARDS) has been widely recognised as a major clinical problem worldwide, carrying a high morbidity and mortality burden [2][3][4]. Although the recent Berlin definition [5] is probably much better than previous ones, there is still a high variability in both epidemiology and clinical outcomes in diverse healthcare settings [4]. In fact, the incidence of ARDS ranges from 1.5 cases per 100 000 [2] to nearly 79 cases per 100 000 [3], with European countries reporting a lower incidence than USA [6]. Moreover, studies from Brazil reported incidence rates ranging from 1.8 to 31 per 100 000 [7,8].Although the overall survival rate is improving [9, 10], there is a notable difference when considering in-hospital mortality over several observational studies [2][3][4][8][9][10][11]. This may be explained by differences in risk factors, availability of diagnostics, ability to recognise ARDS and some selection biases affecting clinical trials [12]. Recently, a large international observational study (the LUNG SAFE trial) evaluated the incidence of ARDS across 459 intensive care units (ICUs) in 50 countries [13]. To assess the clinical recognition of ARDS according to the latest definition, any patient inclusion into the trial was made through a computer algorithm following the Berlin criteria [5], and then compared to the diagnosis made by the attending physicians. Among 4499 patients who developed acute hypoxaemic respiratory failure, ARDS occurred in 10.4% of t...
During several months of 2003, a newly identified illness termed severe acute respiratory syndrome (SARS) spread rapidly through the world. A new coronavirus (SARS-CoV) was identified as the SARS pathogen, which triggered severe pneumonia and acute, often lethal, lung failure. Moreover, among infected individuals influenza such as the Spanish flu and the emergence of new respiratory disease viruses have caused high lethality resulting from acute lung failure. In cell lines, angiotensin-converting enzyme 2 (ACE2) has been identified as a potential SARS-CoV receptor. The high lethality of SARS-CoV infections, its enormous economic and social impact, fears of renewed outbreaks as well as the potential misuse of such viruses as biologic weapons make it paramount to understand the pathogenesis of SARS-CoV. Here we provide the first genetic proof that ACE2 is a crucial SARS-CoV receptor in vivo. SARS-CoV infections and the Spike protein of the SARS-CoV reduce ACE2 expression. Notably, injection of SARS-CoV Spike into mice worsens acute lung failure in vivo that can be attenuated by blocking the renin-angiotensin pathway. These results provide a molecular explanation why SARS-CoV infections cause severe and often lethal lung failure and suggest a rational therapy for SARS and possibly other respiratory disease viruses.
IMPORTANCE Limited information exists about the epidemiology, recognition, management, and outcomes of patients with the acute respiratory distress syndrome (ARDS). OBJECTIVES To evaluate intensive care unit (ICU) incidence and outcome of ARDS and to assess clinician recognition, ventilation management, and use of adjuncts-for example prone positioning-in routine clinical practice for patients fulfilling the ARDS Berlin Definition. DESIGN, SETTING, AND PARTICIPANTS The Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) was an international, multicenter, prospective cohort study of patients undergoing invasive or noninvasive ventilation, conducted during 4 consecutive weeks in the winter of 2014 in a convenience sample of 459 ICUs from 50 countries across 5 continents. EXPOSURES Acute respiratory distress syndrome. MAIN OUTCOMES AND MEASURES The primary outcome was ICU incidence of ARDS. Secondary outcomes included assessment of clinician recognition of ARDS, the application of ventilatory management, the use of adjunctive interventions in routine clinical practice, and clinical outcomes from ARDS. RESULTS Of 29 144 patients admitted to participating ICUs, 3022 (10.4%) fulfilled ARDS criteria. Of these, 2377 patients developed ARDS in the first 48 hours and whose respiratory failure was managed with invasive mechanical ventilation. The period prevalence of mild ARDS was 30.0% (95% CI, 28.2%-31.9%); of moderate ARDS, 46.6% (95% CI, 44.5%-48.6%); and of severe ARDS, 23.4% (95% CI, 21.7%-25.2%). ARDS represented 0.42 cases per ICU bed over 4 weeks and represented 10.4% (95% CI, 10.0%-10.7%) of ICU admissions and 23.4% of patients requiring mechanical ventilation. Clinical recognition of ARDS ranged from 51.3% (95% CI, 47.5%-55.0%) in mild to 78.5% (95% CI, 74.8%-81.8%) in severe ARDS. Less than two-thirds of patients with ARDS received a tidal volume 8 of mL/kg or less of predicted body weight. Plateau pressure was measured in 40.1% (95% CI, 38.2-42.1), whereas 82.6% (95% CI, 81.0%-84.1%) received a positive end-expository pressure (PEEP) of less than 12 cm H 2 O. Prone positioning was used in 16.3% (95% CI, 13.7%-19.2%) of patients with severe ARDS. Clinician recognition of ARDS was associated with higher PEEP, greater use of neuromuscular blockade, and prone positioning. Hospital mortality was 34.9% (95% CI, 31.4%-38.5%) for those with mild, 40.3% (95% CI, 37.4%-43.3%) for those with moderate, and 46.1% (95% CI, 41.9%-50.4%) for those with severe ARDS. CONCLUSIONS AND RELEVANCE Among ICUs in 50 countries, the period prevalence of ARDS was 10.4% of ICU admissions. This syndrome appeared to be underrecognized and undertreated and associated with a high mortality rate. These findings indicate the potential for improvement in the management of patients with ARDS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.