Inherited mutations in the human BRCA2 gene cause about half of the cases of early-onset breast cancer. The embryonic expression pattern of the mouse Brca2 gene is now defined and an interaction identified of the Brca2 protein with the DNA-repair protein Rad51. Developmental arrest in Brca2-deficient embryos, their radiation sensitivity, and the association of Brca2 with Rad51 indicate that Brca2 may be an essential cofactor in the Rad51-dependent DNA repair of double-strand breaks, thereby explaining the tumour-suppressor function of Brca2.
Terminal differentiation is coupled to withdrawal from the cell cycle. The cyclin-dependent kinase inhibitor (CKI) p21Cip1 is transcriptionally regulated by p53 and can induce growth arrest. CKIs are therefore potential mediators of developmental control of cell proliferation. The expression pattern of mouse p21 correlated with terminal differentiation of multiple cell lineages including skeletal muscle, cartilage, skin, and nasal epithelium in a p53-independent manner. Although the muscle-specific transcription factor MyoD is sufficient to activate p21 expression in 10T1/2 cells, p21 was expressed in myogenic cells of mice lacking the genes encoding MyoD and myogenin, demonstrating that p21 expression does not require these transcription factors. The p21 protein may function during development as an inducible growth inhibitor that contributes to cell cycle exit and differentiation.
The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in ≈60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach
The dramatic increase in sequence information in the form of expressed sequence tags (ESTs) and genomic sequence has created a 'gene function gap' with the identification of new genes far outpacing the rate at which their function can be identified. The ability to create mutations in embryonic stem (ES) cells on a large scale by tagged random mutagenesis provides a powerful approach for determining gene function in a mammalian system; this approach is well established in lower organisms. Here we describe a high-throughput mutagenesis method based on gene trapping that allows the automated identification of sequence tags from the mutated genes. This method traps and mutates genes regardless of their expression status in ES cells. To facilitate the study of gene function on a large scale, we are using these techniques to create a library of ES cells called Omnibank, from which sequence-tagged mutations in 2,000 genes are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.