Previous studies have suggested that the P2Z/P2X 7 purinergic receptor can participate in nucleotide-induced modulation of lipopolysaccharide (LPS) stimulated inflammatory mediator production. To test this hypothesis, we evaluated whether antagonism of the P2Z/P2X 7 receptor can influence LPS signaling and expression of the inducible form of nitric-oxide synthase (iNOS) in RAW 264.7 macrophages. In the present study, we demonstrate that pretreatment of RAW 264.7 macrophages with a P2Z/P2X 7 receptor antagonist, periodate oxidized adenosine 5-triphosphate (o-ATP), substantially inhibits LPS-stimulated NO production and iNOS expression without altering cell viability. This effect on LPS-induced iNOS expression is mimicked by a pyridoxal-phosphate-based antagonist (pyridoxal-phosphate-6-azophenyl-2,4-disulfonic acid) of the P2Z/P2X 7 purinergic receptor, indicating that these results are not unique to o-ATP. Additionally, o-ATP prevents cell death induced by P2Z/P2X 7 receptor agonists. To ascertain how P2Z/P2X 7 receptor antagonists influence LPS signaling, we evaluated the capacity of o-ATP to regulate LPSmediated activation of the transcription factor, nuclear factor-B, and the mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK) 1 and ERK2. These experiments reveal that pretreatment of RAW 264.7 cells with o-ATP attenuates the LPS stimulation of a nuclear factor-B-like binding activity. Moreover, the activation of ERK1 and ERK2 by LPS, but not by the phorbol ester, phorbol 12-myristate 13-acetate, is also blocked in RAW 264.7 cells by o-ATP pretreatment. In summary, these data suggest that the P2Z/P2X 7 receptor modulates LPS-induced macrophage activation as assessed by iNOS expression and NO production. This report implicates the P2Z/P2X 7 receptor in the control of protein kinase cascades and transcriptional processes, and these observations are likely to be important for the development of selective purinergic receptor antagonists for the treatment of septic shock.
The nucleotide receptor P2X7 is expressed by most leukocytes and initiates signaling events that amplify numerous LPS responses. We tested the hypothesis that loss-of-function polymorphisms in the human P2X7 gene predispose to the production of an anti-inflammatory mediator balance. Accordingly, we developed a novel P2X7 pore assay in whole blood that magnifies the activity from wild-type alleles and preserves the gene dosage effect for the 1513 C polymorphism (AA, 69 ± 4; AC, 42 ± 4; and CC, 6 ± 1-fold stimulation). Thirty of 200 healthy individuals were identified as having low P2X7 pore activity. Seven low pore subjects were 1513 CC, 3 and 11 participants had the other known variants 946 GA and 1729 TA respectively; the remaining 9 volunteers likely have novel polymorphisms. Because platelets are a large source of extracellular ATP during inflammation, whole blood was treated ex vivo with Salmonella typhimurium LPS in the absence of exogenous nucleotides. LPS-stimulated whole blood from individuals in the low pore activity group generated reduced plasma levels of TNF-α (p = 0.036) and higher amounts of IL-10 (p < 0.001) relative to the high pore controls. This reduction in the TNF-α to IL-10 ratio persisted to at least 24 h and is further decreased by cotreatment with 2-methylthio-ATP. The ability of P2X7 polymorphisms to regulate the LPS-induced TNF-α to IL-10 ratio suggests that 15% of healthy adults may exhibit anti-inflammatory mediator responses during major infectious perturbations of the immune system, which can be predicted by P2X7 pore activity.
Background: Innate immune response amplification is achieved by leukocyte expression of the purinergic nucleotide receptor P2X 7 , an extracellular nucleotidegated pore. Previously, low P2X 7 pore activity in whole blood was associated with loss-of-function genotypes in correlation with a decreased ratio of lipopolysaccharidestimulated tumor necrosis factor-␣ to interleukin-10, of relevance to a variety of infectious and inflammatory disorders. We hypothesized that evaluation of participants with discordance between the P2X7 genotype and pore status would disclose additional alleles, linkage disequilibrium, and novel functional correlates of genotype to phenotype. Methods: Comparison of whole-blood pore results with restriction fragment length polymorphism data for known loss-of-function genotypes from 200 healthy participants optimized the diagnostic threshold for low pore activity by ROC curve analysis. We identified novel alleles and inferred haplotypes by sequencing outlier genomic templates and by linkage analysis. Results: With a refined threshold of low activity, a normal pore result had only a 2% probability of association with known loss-of-function variants. By contrast, the positive predictive value of low pore activity was 59% for identifying known alleles. DNA samples from this discordant group contained 28 P2X7 sequence variations. Linkage analysis demonstrated that A1513C, T1729A, and G946A are inherited independently from one another, although these loss-of-function variants are
To evaluate the mechanisms by which epidermal growth factor (EGF) regulates actin-based cellular processes such as cell migration, we first examined the effects of EGF on cell adhesion, which is essential for cell migration. In mouse B82L fibroblasts transfected with the full-length EGF receptor, EGF promotes cell rounding and attenuates cell spreading on fibronectin, laminin, and vitronectin, and thus appears to reduce the strength of cell adhesion. Moreover, EGF synergizes with multiple extracellular matrix (ECM) components in the promotion of integrin-mediated cell migration of several different cell types, including fibroblasts and various carcinoma and osteosarcoma cell lines. Interestingly, co-presentation (co-positioning) of EGF with laminin or fibronectin is essential for EGF-stimulated migration. When EGF is mixed with the cells instead of the ECM components, it has little effect on cell migration. These results suggest that co-presentation of EGF with ECM components can enhance the polarization events required for directional cell movement. To identify the EGF receptor elements critical for the EGF stimulation of cell migration, B82L fibroblasts were transfected with either mutated or wild-type EGF receptors. Surprisingly, we found that B82L-Parental cells that lack the EGF receptor are not able to migrate to fibronectin, even though they can adhere to fibronectin. However, the introduction of wild-type EGF receptors into these fibroblasts enables them to migrate toward fibronectin even in the absence of EGF. The requirement of the EGF receptor for cell migration does not appear to result from the secretion of EGF or TGF-␣ by the cells transfected with the EGF receptor. Furthermore, cells expressing EGF receptors that are kinase-inactive, or Cterminally truncated, exhibit little migration toward fibronectin, indicating that an intact EGF receptor kinase is required for fibronectin-induced cell migration. In addition, neutralizing anti-EGF receptor antibodies attenuate cell migration in the presence of EGF, and inhibit migration to fibronectin or laminin alone. These results further suggest that the EGF receptor is downstream of integrin activation in the signal transduction pathways leading to fibroblast migration. EGF1 triggers many biological responses, including cell proliferation and differentiation (1). In addition, EGF has been shown to induce the reorganization of the actin cytoskeleton, and the EGF receptor has been found to be associated with actin filaments (2-7). In this regard, EGF has been reported to stimulate rapid cell rounding, extensive membrane ruffling, extension of filopodia, retraction of cells from the substratum (8, 9), extensive cortical actin polymerization, and depolymerization of actin stress fibers (10, 11). Moreover, numerous studies have shown that activation of the EGF receptor leads to increased cell motility (12-19) and production of ECM degrading proteases (20 -23), thereby supporting a role for the EGF receptor in normal development and pathophysiological events such...
Macrophages express several lipopolysaccharide (LPS) binding proteins and are potently activated by LPS to produce inflammatory mediators. Recent studies have shown that receptors for exogenous nucleotides (P2X and P2Y purinergic receptors) can modulate macrophage production of TNF-alpha, IL-1beta and nitric oxide (NO) following LPS exposure. Macrophages and LPS-stimulated monocytes express elevated levels of P2Y1, P2Y2 and P2X7 mRNA, suggesting that both P2Y and P2X receptors can contribute to LPS-induced pathophysiology. In addition, oxidized-ATP treatment (which inhibits P2X7) of macrophages blocks LPS-induced NO production, NF-kappaB and ERK-1/2 activation. Also, an LPS-binding domain located in the P2X7 C-terminus appears important for receptor trafficking/function. Moreover, the purinergic receptor ligand 2-MeS-ATP attenuates LPS-induced cytokine and NO production in vivo and ex vivo. These data suggest that P2X7 and certain P2Ys are linked to LPS effects, although their relative contribution in vivo is unclear. Accordingly, we tested the capacity of several adenine nucleotides to modulate LPS-induced mortality in mice. We found that the P2X7-directed ligand BzATP was unable to prevent LPS-induced death, whereas 2-MeS-ATP and 2-Cl-ATP, which bind to multiple P2X and P2Y receptors were able to protect mice from LPS-induced death. These data suggest that the co-ordinate action of P2Y and P2X7 receptors are critical for controlling LPS responses in vivo and that agents directed against both receptor classes may provide the greatest therapeutic advantage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.