To gain insight into melanoma pathogenesis, we characterized an insertional mouse mutant, TG3, that is predisposed to develop multiple melanomas. Physical mapping identified multiple tandem insertions of the transgene into intron 3 of Grm1 (encoding metabotropic glutamate receptor 1) with concomitant deletion of 70 kb of intronic sequence. To assess whether this insertional mutagenesis event results in alteration of transcriptional regulation, we analyzed Grm1 and two flanking genes for aberrant expression in melanomas from TG3 mice. We observed aberrant expression of only Grm1. Although we did not detect its expression in normal mouse melanocytes, Grm1 was ectopically expressed in the melanomas from TG3 mice. To confirm the involvement of Grm1 in melanocytic neoplasia, we created an additional transgenic line with Grm1 expression driven by the dopachrome tautomerase promoter. Similar to the original TG3, the Tg(Grm1)EPv line was susceptible to melanoma. In contrast to human melanoma, these transgenic mice had a generalized hyperproliferation of melanocytes with limited transformation to fully malignant metastasis. We detected expression of GRM1 in a number of human melanoma biopsies and cell lines but not in benign nevi and melanocytes. This study provides compelling evidence for the importance of metabotropic glutamate signaling in melanocytic neoplasia.
Haploinsufficiency for the transcription factor SOX10 is associated with the pigmentary deficiencies of Waardenburg syndrome (WS) and is modeled in Sox10 haploinsufficient mice (Sox10(LacZ/+)). As genetic background affects WS severity in both humans and mice, we established an N-ethyl-N-nitrosourea (ENU) mutagenesis screen to identify modifiers that increase the phenotypic severity of Sox10(LacZ/+) mice. Analysis of 230 pedigrees identified three modifiers, named modifier of Sox10 neurocristopathies (Mos1, Mos2 and Mos3). Linkage analysis confirmed their locations on mouse chromosomes 13, 4 and 3, respectively, within regions distinct from previously identified WS loci. Positional candidate analysis of Mos1 identified a truncation mutation in a hedgehog(HH)-signaling mediator, GLI-Kruppel family member 3 (Gli3). Complementation tests using a second allele of Gli3 (Gli3(Xt-J)) confirmed that a null mutation of Gli3 causes the increased hypopigmentation in Sox10(LacZ/+);Gli3(Mos1/)(+) double heterozygotes. Early melanoblast markers (Mitf, Sox10, Dct, and Si) are reduced in Gli3(Mos1/)(Mos1) embryos, indicating that loss of GLI3 signaling disrupts melanoblast specification. In contrast, mice expressing only the GLI3 repressor have normal melanoblast specification, indicating that the full-length GLI3 activator is not required for specification of neural crest to the melanocyte lineage. This study demonstrates the feasibility of sensitized screens to identify disease modifier loci and implicates GLI3 and other HH signaling components as modifiers of human neurocristopathies.
Niemann-Pick disease type C (NPC) is a neurodegenerative disorder with major visceral complications, including liver disease that can be fatal before onset of neurodegeneration. We have sought to determine the extent to which visceral disease contributes to neurodegeneration by making transgenic mice in which the wild-type NPC1 protein is expressed primarily in the CNS using the prion promoter. When the transgene was introduced into the npc1(-/-) animals neurodegeneration was prevented, a 'normal' lifespan occurred and the sterility of npc1(-/-) mice was corrected. The rescue did not provide complete neurological correction in the CNS as GM2 and GM3 gangliosides were observed to accumulate in some neurons and glia of transgenic animals. Two of three transgenic lines demonstrated some low-level ectopic expression resulting in correction of visceral phenotypes in liver and spleen. Interestingly, the third transgenic line continued to have moderate histocytosis in liver and spleen, yet had no detectable neurodegeneration. Thus, it is primarily the lack of NPC1 in the CNS and not the secondary effects of the visceral involvement that causes the neurological decline in NPC disease. In addition, the expression levels of NPC1 found in the CNS of transgenic animals were much greater than in normal littermates, demonstrating that overexpression of NPC1 is not harmful and allowing possibilities for genetic therapy interventions that utilize overexpression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.