DECi-hertz Interferometer Gravitational-wave Observatory (DECIGO) is a future Japanese space gravitational-wave antenna. The most important objective of DECIGO, among various sciences to be aimed at, is to detect gravitational waves coming from the inflation of the universe. DECIGO consists of four clusters of spacecraft, and each cluster consists of three spacecraft with three Fabry–Perot Michelson interferometers. As a pathfinder mission of DECIGO, B-DECIGO will be launched, hopefully in the 2020s, to demonstrate technologies necessary for DECIGO as well as to lead to fruitful multimessenger astronomy. B-DECIGO is a small-scale or simpler version of DECIGO with the sensitivity slightly worse than that of DECIGO, yet good enough to provide frequent detection of gravitational waves.
KAGRA is a second-generation interferometric gravitational-wave detector with 3 km arms constructed at Kamioka, Gifu, Japan. It is now in its final installation phase, which we call bKAGRA (baseline KAGRA), with scientific observations expected to begin in late 2019. One of the advantages of KAGRA is its underground location of at least 200 m below the ground surface, which reduces seismic motion at low frequencies and increases the stability of the detector. Another advantage is that it cools down the sapphire test mass mirrors to cryogenic temperatures to reduce thermal noise. In April-May 2018, we operated a 3 km Michelson interferometer with a cryogenic test mass for 10 d, which was the first time that km-scale interferometer was operated at cryogenic temperatures. In this article, we report the results of this 'bKAGRA Phase 1' operation. We have demonstrated the feasibility of 3 km interferometer alignment and control with cryogenic mirrors.
KAGRA is a 3-km interferometric gravitational wave telescope located in the Kamioka mine in Japan. It is the first km-class gravitational wave telescope constructed underground to reduce seismic noise, and the first km-class telescope to use cryogenic cooling of test masses to reduce thermal noise. The construction of the infrastructure to house the interferometer in the tunnel, and the initial phase operation of the interferometer with a simple 3-km Michelson configuration have been completed. The first cryogenic operation is expected in 2018, and the observing runs with a full interferometer are expected in 2020s. The basic interferometer configuration and the current status of KAGRA are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.