Whereas progress has been made in identifying neural signals related to rapid, cued decisions, less is known about how brains guide and terminate more ethologically relevant deliberations, where an animal's own behavior governs the options experienced over minutes. Drosophila search for many seconds to minutes for egg-laying sites with high relative value and neurons, called oviDNs, exist whose activity fulfills necessity and sufficiency criteria for initiating the egg-deposition motor program. Here we show that oviDNs express a calcium signal that rises over seconds to minutes as a fly deliberates whether to lay an egg. The calcium signal dips when an egg is internally prepared (ovulated), rises at a rate related to the relative value of the current substrate being experienced, and reaches a consistent peak just prior to the abdomen bend for egg deposition. We provide perturbational evidence that the egg-deposition motor program is initiated once this signal hits a threshold and that sub-threshold variation in the signal regulates the time spent deliberating and, ultimately, the option chosen. These results argue that a rise-to-threshold signal guides Drosophila to lay eggs on substrate options with high relative value, with each egg-laying event representing a self-paced decision similar to real-world decisions made by humans and other mammals.
To better understand how animals make ethologically relevant decisions, we studied egg-laying substrate choice in
Drosophila
. We found that flies dynamically increase or decrease their egg-laying rates while exploring substrates so as to target eggs to the best, recently visited option. Visiting the best option typically yielded inhibition of egg laying on other substrates for many minutes. Our data support a model in which flies compare the current substrate’s value with an internally constructed expectation on the value of available options to regulate the likelihood of laying an egg. We show that dopamine neuron activity is critical for learning and/or expressing this expectation, similar to its role in certain tasks in vertebrates. Integrating sensory experiences over minutes to generate an estimate of the quality of available options allows flies to use a dynamic reference point for judging the current substrate and might be a general way in which decisions are made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.