T lymphocytes expressing a chimeric antigen receptor (CAR) targeting the CD19 antigen (CAR.19) may be of value for the therapy of B-cell malignancies. Because the in vivo survival, expansion and anti-lymphoma activity of CAR.19+ T cells remain suboptimal even when the CAR contains a CD28 costimulatory endodomain, we generated a novel construct that also incorporates the interleukin-15 (IL15) gene and an inducible caspase-9-based suicide gene (iC9/CAR.19/IL15). We found that compared to CAR.19+ T cells, iC9/CAR.19/IL15+ T cells had: (i) greater numeric expansion upon antigen stimulation (10-fold greater expansion in vitro, and 3 to 15 fold greater expansion in vivo) and reduced cell death rate (Annexin-V+/7-AAD+ cells 10% ± 6% for iC9/CAR.19/IL15+ T cells and 32% ± 19% CAR.19+ T cells); (ii) reduced expression of the programmed death 1 (PD-1) receptor upon antigen stimulation (PD-1+ cells <15% for iC9/CAR.19/IL15+ T cells versus >40% for CAR.19+ T cells); (iii) improved anti-tumor effects in vivo (from 4.7 to 5.4-fold reduced tumor growth). In addition, iC9/CAR.19/IL15+ T cells were efficiently eliminated upon pharmacologic activation of the suicide gene. In summary, this strategy safely increases the anti-lymphoma/leukemia effects of CAR.19-redirected T lymphocytes and may be a useful approach for treatment of patients with B-cell malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.