Summary Medulloblastoma is a malignant childhood brain tumour comprising four discrete subgroups. To identify mutations that drive medulloblastoma we sequenced the entire genomes of 37 tumours and matched normal blood. One hundred and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56 medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma: several target distinct components of the epigenetic machinery in different disease subgroups, e.g., regulators of H3K27 and H3K4 trimethylation in subgroup-3 and 4 (e.g., KDM6A and ZMYM3), and CTNNB1-associated chromatin remodellers in WNT-subgroup tumours (e.g., SMARCA4 and CREBBP). Modelling of mutations in mouse lower rhombic lip progenitors that generate WNT-subgroup tumours, identified genes that maintain this cell lineage (DDX3X) as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumourigenesis. These data provide important new insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development.
Pediatric high-grade glioma (HGG) is a devastating disease with a two-year survival of less than 20%1. We analyzed 127 pediatric HGGs, including diffuse intrinsic pontine gliomas (DIPGs) and non-brainstem HGGs (NBS-HGGs) by whole genome, whole exome, and/or transcriptome sequencing. We identified recurrent somatic mutations in ACVR1 exclusively in DIPG (32%), in addition to the previously reported frequent somatic mutations in histone H3, TP53 and ATRX in both DIPG and NBS-HGGs2-5. Structural variants generating fusion genes were found in 47% of DIPGs and NBS-HGGs, with recurrent fusions involving the neurotrophin receptor genes NTRK1, 2, or 3 in 40% of NBS-HGGs in infants. Mutations targeting receptor tyrosine kinase/RAS/PI3K signaling, histone modification or chromatin remodeling, and cell cycle regulation were found in 68%, 73% and 59%, respectively, of pediatric HGGs, including DIPGs and NBS-HGGs. This comprehensive analysis provides insights into the unique and shared pathways driving pediatric HGG within and outside the brainstem.
Of nine ependymoma molecular groups detected by DNA methylation profiling, the posterior fossa type A (PFA) is most prevalent. We used DNA methylation profiling to look for further molecular heterogeneity among 675 PFA ependymomas. Two major subgroups, PFA-1 and PFA-2, and nine minor subtypes were discovered. Transcriptome profiling suggested a distinct histogenesis for PFA-1 and PFA-2, but their clinical parameters were similar. In contrast, PFA subtypes differed with respect to age at diagnosis, gender ratio, outcome, and frequencies of genetic alterations. One subtype, PFA-1c, was enriched for 1q gain and had a relatively poor outcome, while patients with PFA-2c ependymomas showed an overall survival at 5 years of > 90%. Unlike other ependymomas, PFA-2c tumors express high levels of OTX2, a potential biomarker for this ependymoma subtype with a good prognosis. We also discovered recurrent mutations among PFA ependymomas. H3 K27M mutations were present in 4.2%, occurring only in PFA-1 tumors, and missense mutations in an uncharacterized gene, CXorf67, were found in 9.4% of PFA ependymomas, but not in other groups. We detected high levels of wildtype or mutant CXorf67 expression in all PFA subtypes except PFA-1f, which is enriched for H3 K27M mutations. PFA ependymomas are characterized by lack of H3 K27 trimethylation (H3 K27-me3), and we tested the hypothesis that CXorf67 binds to PRC2 and can modulate levels of H3 K27-me3. Immunoprecipitation/mass spectrometry detected EZH2, SUZ12, and EED, core components of the PRC2 complex, bound to CXorf67 in the Daoy cell line, which shows high levels of CXorf67 and no expression of H3 K27-me3. Enforced reduction of CXorf67 in Daoy cells restored H3 K27-me3 levels, while enforced expression of CXorf67 in HEK293T and neural stem cells reduced H3 K27-me3 levels. Our data suggest that heterogeneity among PFA ependymomas could have clinicopathologic utility and that CXorf67 may have a functional role in these tumors.
A B S T R A C T PurposeLong-term survival for children with diffuse intrinsic pontine glioma (DIPG) is less than 10%, and new therapeutic targets are urgently required. We evaluated a large cohort of DIPGs to identify recurrent genomic abnormalities and gene expression signatures underlying DIPG. Patients and MethodsSingle-nucleotide polymorphism arrays were used to compare the frequencies of genomic copy number abnormalities in 43 DIPGs and eight low-grade brainstem gliomas with data from adult and pediatric (non-DIPG) glioblastomas, and expression profiles were evaluated using gene expression arrays for 27 DIPGs, six low-grade brainstem gliomas, and 66 nonbrainstem low-grade gliomas. ResultsFrequencies of specific large-scale and focal imbalances varied significantly between DIPGs and nonbrainstem pediatric glioblastomas. Focal amplifications of genes within the receptor tyrosine kinase-Ras-phosphoinositide 3-kinase signaling pathway were found in 47% of DIPGs, the most common of which involved PDGFRA and MET. Thirty percent of DIPGs contained focal amplifications of cell-cycle regulatory genes controlling retinoblastoma protein (RB) phosphorylation, and 21% had concurrent amplification of genes from both pathways. Some tumors showed heterogeneity in amplification patterns. DIPGs showed distinct gene expression signatures related to developmental processes compared with nonbrainstem pediatric high-grade gliomas, whereas expression signatures of low-grade brainstem and nonbrainstem gliomas were similar. ConclusionDIPGs comprise a molecularly related but distinct subgroup of pediatric gliomas. Genomic studies suggest that targeted inhibition of receptor tyrosine kinases and RB regulatory proteins may be useful therapies for DIPG.
Purpose Two phase II studies assessed the efficacy of vismodegib, a sonic hedgehog (SHH) pathway inhibitor that binds smoothened (SMO), in pediatric and adult recurrent medulloblastoma (MB). Patients and Methods Adult patients enrolled onto PBTC-025B and pediatric patients enrolled onto PBTC-032 were treated with vismodegib (150 to 300 mg/d). Protocol-defined response, which had to be sustained for 8 weeks, was confirmed by central neuroimaging review. Molecular tests to identify patterns of response and insensitivity were performed when tissue was available. Results A total of 31 patients were enrolled onto PBTC-025B, and 12 were enrolled onto PBTC-032. Three patients in PBTC-025B and one in PBTC-032, all with SHH-subgroup MB (SHH-MB), exhibited protocol-defined responses. Progression-free survival (PFS) was longer in those with SHH-MB than in those with non-SHH–MB, and prolonged disease stabilization occurred in 41% of patient cases of SHH-MB. Among those with SHH-MB, loss of heterozygosity of PTCH1 was associated with prolonged PFS, and diffuse staining of P53 was associated with reduced PFS. Whole-exome sequencing identified mutations in SHH genes downstream from SMO in four of four tissue samples from nonresponders and upstream of SMO in two of four patients with favorable responses. Conclusion Vismodegib exhibits activity against adult recurrent SHH-MB but not against recurrent non-SHH–MB. Inadequate accrual of pediatric patients precluded conclusions in this population. Molecular analyses support the hypothesis that SMO inhibitor activity depends on the genomic aberrations within the tumor. Such inhibitors should be advanced in SHH-MB studies; however, molecular and genomic work remains imperative to identify target populations that will truly benefit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.