The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.
Crop domestications are long-term selection experiments that have greatly advanced human civilization. The domestication of cultivated rice (Oryza sativa L.) ranks as one of the most important developments in history. However, its origins and domestication processes are controversial and have long been debated. Here we generate genome sequences from 446 geographically diverse accessions of the wild rice species Oryza rufipogon, the immediate ancestral progenitor of cultivated rice, and from 1,083 cultivated indica and japonica varieties to construct a comprehensive map of rice genome variation. In the search for signatures of selection, we identify 55 selective sweeps that have occurred during domestication. In-depth analyses of the domestication sweeps and genome-wide patterns reveal that Oryza sativa japonica rice was first domesticated from a specific population of O. rufipogon around the middle area of the Pearl River in southern China, and that Oryza sativa indica rice was subsequently developed from crosses between japonica rice and local wild rice as the initial cultivars spread into South East and South Asia. The domestication-associated traits are analysed through high-resolution genetic mapping. This study provides an important resource for rice breeding and an effective genomics approach for crop domestication research.Cultivated rice (Oryza sativa L.), which is grown worldwide and is one of the most important cereals for human nutrition, is considered to have been domesticated from wild rice (Oryza rufipogon) thousands of years ago 1-4 . The differences between O. sativa and O. rufipogon are reflected in a wide range of morphological and physiological traits [5][6][7][8][9] . Despite the fact that rice is a major cereal and a model system for plant biology, the evolutionary origins and domestication processes of cultivated rice have long been debated. The puzzles about rice domestication include: (1) where the geographic origin of cultivated rice was, (2) which types of O. rufipogon served as its direct wild progenitor, and (3) whether the two subspecies of cultivated rice, indica and japonica, are derived from a single or multiple domestications.A wide range of genetic and archaeological studies have been carried out to examine the phylogenetic relationships of rice, and investigate the demographic history of rice domestication [10][11][12][13][14][15][16][17][18][19] . Molecular phylogenetic analyses indicated that indica and japonica originated independently 3,10,20 . However, the well-characterized domestication genes in rice were found to be fixed in both subspecies with the same alleles, thus supporting a single domestication origin [6][7][8][9]16 . Recently, a demographic analysis of single-nucleotide polymorphisms (SNPs) detected from 630 gene fragments suggested a single domestication origin of rice 17 . Meanwhile, population genetics analyses of genome-wide data of cultivated and wild rice have tended to suggest that indica and japonica genomes generally appear to be of independent origin 1...
We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.