Adenocarcinoma of the lung is the leading cause of cancer death worldwide. Here we report molecular profiling of 230 resected lung adenocarcinomas using messenger RNA, microRNA and DNA sequencing integrated with copy number, methylation and proteomic analyses. High rates of somatic mutation were seen (mean 8.9 mutations per megabase). Eighteen genes were statistically significantly mutated, including RIT1 activating mutations and newly described loss-of-function MGA mutations which are mutually exclusive with focal MYC amplification. EGFR mutations were more frequent in female patients, whereas mutations in RBM10 were more common in males. Aberrations in NF1, MET, ERBB2 and RIT1 occurred in 13% of cases and were enriched in samples otherwise lacking an activated oncogene, suggesting a driver role for these events in certain tumours. DNA and mRNA sequence from the same tumour highlighted splicing alterations driven by somatic genomic changes, including exon 14 skipping in MET mRNA in 4% of cases. MAPK and PI(3)K pathway activity, when measured at the protein level, was explained by known mutations in only a fraction of cases, suggesting additional, unexplained mechanisms of pathway activation. These data establish a foundation for classification and further investigations of lung adenocarcinoma molecular pathogenesis.
Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twentyfive cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter-and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis.cancer | head and neck | papilloma virus | genome rearrangement | integration sites H ead and neck cancer (HNC) is a heterogeneous group of tumors characterized by a common anatomic origin, and most such tumors develop from within the mucosa and are classified as head and neck squamous cell carcinomas (HNSCCs) (1). HNSCC, the sixth most common cancer diagnosed worldwide and the eighth most common cause of cancer death (2), is frequently associated with human papillomavirus (HPV) infection (3, 4). Depending on the anatomic site of the tumor, HPV prevalence is estimated at 23-36% (5). HPV-positive HNSCCs form a distinct subset of HNCs that differs from HPV-negative HNSCCs in tumor biology and clinical characteristics, including superior clinical outcomes (6-9).The molecular pathogenesis of HPV-driven HNSCC also seems distinct from HPV-negative tumors, with previous studies showing a divergent spectrum of alterations in gene expression, mutations, amplifications, and deletions as well as distinct epigenome alterations (10-15). HPV is known to drive tumorigenesis through the actions of its major oncoproteins E6 and E7, which target numerous cellular pathways, including inactivation of p53 and the retinoblastoma (Rb) protein (16-18). Together with E5, they also play an important role in immune evasion, being involved in both innate and adaptive immunity (19,20).Initially after infection, HPV is identified in circular extrachromosomal particles or episomes. A critical step in progression to cancer is the integration of viral DNA into the host cell Significance A significant proportion of head and neck cancer is driven by human papil...
Head and neck squamous cell carcinoma (HNSCC) is a frequently fatal heterogeneous disease. Beyond the role of human papilloma virus (HPV), no validated molecular characterization of the disease has been established. Using an integrated genomic analysis and validation methodology we confirm four molecular classes of HNSCC (basal, mesenchymal, atypical, and classical) consistent with signatures established for squamous carcinoma of the lung, including deregulation of the KEAP1/NFE2L2 oxidative stress pathway, differential utilization of the lineage markers SOX2 and TP63, and preference for the oncogenes PIK3CA and EGFR. For potential clinical use the signatures are complimentary to classification by HPV infection status as well as the putative high risk marker CCND1 copy number gain. A molecular etiology for the subtypes is suggested by statistically significant chromosomal gains and losses and differential cell of origin expression patterns. Model systems representative of each of the four subtypes are also presented.
Background Although preterm birth less than 37 weeks gestation is the leading cause of neonatal morbidity and mortality in the United States, the majority of data regarding preterm neonatal outcomes come from older studies, and many reports have been limited to only very preterm neonates. Delineation of neonatal outcomes by delivery gestational age is needed to further clarify the continuum of mortality and morbidity frequencies among preterm neonates. Objective We sought to describe the contemporary frequencies of neonatal death, neonatal morbidities, and neonatal length of stay across the spectrum of preterm gestational ages. Study Design Secondary analysis of an obstetric cohort of 115,502 women and their neonates who were born in 25 hospitals nationwide, 2008–2011. All live born non-anomalous singleton preterm (23.0–36.9 weeks of gestation) neonates were included in this analysis. The frequency of neonatal death, major neonatal morbidity (intraventricular hemorrhage grade III/IV, seizures, hypoxic-ischemic encephalopathy, necrotizing enterocolitis stage II/III, bronchopulmonary dysplasia, persistent pulmonary hypertension), and minor neonatal morbidity (hypotension requiring treatment, intraventricular hemorrhage grade 1/2, necrotizing enterocolitis stage 1, respiratory distress syndrome, hyperbilirubinemia requiring treatment) were calculated by delivery gestational age; each neonate was classified once by the worst outcome they met criteria for. Results 8,334 deliveries met inclusion criteria. There were 119 neonatal deaths (1.4%). 657 (7.9%) neonates had major morbidity, 3,136 (37.6%) had minor morbidity, and 4,422 (53.1%) survived without any of the studied morbidities. Deaths declined rapidly with each advancing week of gestation. This decline in death was accompanied by an increase in major neonatal morbidity, which peaked at 54.8% at 25 weeks of gestation. As frequencies of death, and major neonatal morbidity fell, minor neonatal morbidity increased, peaking at 81.7% at 31 weeks of gestation. The frequency of all morbidities fell beyond 32 weeks. Neonatal length of hospital stay decreased significantly with each additional completed week of pregnancy; among babies delivered from 26 to 32 weeks of gestation, each additional week in utero reduced the subsequent length of neonatal hospitalization by a minimum of 8 days. The median post-menstrual age at discharge nadired at 35.7 weeks post-menstrual age for babies born at 32–33 weeks of gestation. Conclusions Our data show that there is a continuum of outcomes, with each additional week for gestation conferring survival benefit while reducing the length of initial hospitalization. These contemporary data can be useful for patient counseling regarding preterm outcomes.
IMPORTANCEIt remains unknown whether SARS-CoV-2 infection specifically increases the risk of serious obstetric morbidity.OBJECTIVE To evaluate the association of SARS-CoV-2 infection with serious maternal morbidity or mortality from common obstetric complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.