Truncating mutations of chromodomain helicase DNA-binding protein 8 (CHD8), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA sequencing) with genome-wide CHD8 binding (ChIP sequencing). Suppressing CHD8 to levels comparable with the loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8-binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (P < 10 −8) and CHD8-bound genes (P = 0.0043), which align with previously identified coexpression modules during fetal development. We also find an intriguing enrichment of cancer-related gene sets among CHD8-bound genes (P < 10 −10). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene-expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis.he genetic architecture of autism spectrum disorder (ASD) is complex and heterogeneous. A wave of recent discoveries has identified individual genes that contribute to ASD when they suffer heterozygous inactivation by coding mutation, copy number variation, or balanced chromosomal abnormalities (1-7). Many of these genes fit neatly into current biological models of ASD involving altered synaptic structure and glutamatergic neurotransmission, but others have been surprising, with a less ready biological interpretation, including genes involved in chromatin modification, DNA methylation, cell adhesion, and global transcriptional regulation. This diversity of genes predisposing to ASD suggests either that there are many pathways that independently can result in the autism phenotype or that functionally distinct ASD-risk genes can trigger consequences that converge on a limited number of shared pathways of ASD pathogenesis. Because now experimental tools are available to reduce gene expression specifically in human neural progenitor cells (NPCs), which can mimic the impact of functional hemizygosity, we have explored this question by investigating the functional genomic consequences of suppr...
SUMMARY Genome editing has attracted wide interest for the generation of cellular models of disease using human pluripotent stem cells and other cell types. CRISPR-Cas systems and TALENs can target desired genomic sites with high efficiency in human cells, but recent publications have led to concern about the extent to which these tools may cause off-target mutagenic effects that could potentially confound disease-modeling studies. Using CRISPR-Cas9 and TALEN targeted human pluripotent stem cell clones, we performed whole-genome sequencing at high coverage to assess the degree of mutagenesis across the entire genome. In both types of clones, we found that off-target mutations attributable to the nucleases were very rare. From this analysis, we suggest that while some cell types may be at risk for off-target mutations, the incidence of such effects in human pluripotent stem cells may be sufficiently low to not be a significant concern for disease modeling and other applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.