SummaryBackgroundOsteoarthritis is the most common form of arthritis worldwide and is a major cause of pain and disability in elderly people. The health economic burden of osteoarthritis is increasing commensurate with obesity prevalence and longevity. Osteoarthritis has a strong genetic component but the success of previous genetic studies has been restricted due to insufficient sample sizes and phenotype heterogeneity.MethodsWe undertook a large genome-wide association study (GWAS) in 7410 unrelated and retrospectively and prospectively selected patients with severe osteoarthritis in the arcOGEN study, 80% of whom had undergone total joint replacement, and 11 009 unrelated controls from the UK. We replicated the most promising signals in an independent set of up to 7473 cases and 42 938 controls, from studies in Iceland, Estonia, the Netherlands, and the UK. All patients and controls were of European descent.FindingsWe identified five genome-wide significant loci (binomial test p≤5·0×10−8) for association with osteoarthritis and three loci just below this threshold. The strongest association was on chromosome 3 with rs6976 (odds ratio 1·12 [95% CI 1·08–1·16]; p=7·24×10−11), which is in perfect linkage disequilibrium with rs11177. This SNP encodes a missense polymorphism within the nucleostemin-encoding gene GNL3. Levels of nucleostemin were raised in chondrocytes from patients with osteoarthritis in functional studies. Other significant loci were on chromosome 9 close to ASTN2, chromosome 6 between FILIP1 and SENP6, chromosome 12 close to KLHDC5 and PTHLH, and in another region of chromosome 12 close to CHST11. One of the signals close to genome-wide significance was within the FTO gene, which is involved in regulation of bodyweight—a strong risk factor for osteoarthritis. All risk variants were common in frequency and exerted small effects.InterpretationOur findings provide insight into the genetics of arthritis and identify new pathways that might be amenable to future therapeutic intervention.FundingarcOGEN was funded by a special purpose grant from Arthritis Research UK.
ObjectivesOsteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects.MethodsWe performed a two-stage meta-analysis on more than 78 000 participants. In stage 1, we synthesised data from eight GWAS whereas data from 10 centres were used for ‘in silico’ or ‘de novo’ replication. Besides the main analysis, a stratified by sex analysis was performed to detect possible sex-specific signals. Meta-analysis was performed using inverse-variance fixed effects models. A random effects approach was also used.ResultsWe accumulated 11 277 cases of radiographic and symptomatic hip OA. We prioritised eight single nucleotide polymorphism (SNPs) for follow-up in the discovery stage (4349 OA cases); five from the combined analysis, two male specific and one female specific. One locus, at 20q13, represented by rs6094710 (minor allele frequency (MAF) 4%) near the NCOA3 (nuclear receptor coactivator 3) gene, reached genome-wide significance level with p=7.9×10−9 and OR=1.28 (95% CI 1.18 to 1.39) in the combined analysis of discovery (p=5.6×10−8) and follow-up studies (p=7.3×10−4). We showed that this gene is expressed in articular cartilage and its expression was significantly reduced in OA-affected cartilage. Moreover, two loci remained suggestive associated; rs5009270 at 7q31 (MAF 30%, p=9.9×10−7, OR=1.10) and rs3757837 at 7p13 (MAF 6%, p=2.2×10−6, OR=1.27 in male specific analysis).ConclusionsNovel genetic loci for hip OA were found in this meta-analysis of GWAS.
Osteoarthritis (OA) is a prevalent, heritable degenerative joint disease with a substantial public health impact. We used a 1000-Genomes-Project-based imputation in a genome-wide association scan for osteoarthritis (3177 OA cases and 4894 controls) to detect a previously unidentified risk locus. We discovered a small disease-associated set of variants on chromosome 13. Through large-scale replication, we establish a robust association with SNPs in MCF2L (rs11842874, combined odds ratio [95% confidence interval] 1.17 [1.11-1.23], p = 2.1 × 10(-8)) across a total of 19,041 OA cases and 24,504 controls of European descent. This risk locus represents the third established signal for OA overall. MCF2L regulates a nerve growth factor (NGF), and treatment with a humanized monoclonal antibody against NGF is associated with reduction in pain and improvement in function for knee OA patients.
ObjectivesObesity as measured by body mass index (BMI) is one of the major risk factors for osteoarthritis. In addition, genetic overlap has been reported between osteoarthritis and normal adult height variation. We investigated whether this relationship is due to a shared genetic aetiology on a genome-wide scale.MethodsWe compared genetic association summary statistics (effect size, p value) for BMI and height from the GIANT consortium genome-wide association study (GWAS) with genetic association summary statistics from the arcOGEN consortium osteoarthritis GWAS. Significance was evaluated by permutation. Replication of osteoarthritis association of the highlighted signals was investigated in an independent dataset. Phenotypic information of height and BMI was accounted for in a separate analysis using osteoarthritis-free controls.ResultsWe found significant overlap between osteoarthritis and height (p=3.3×10−5 for signals with p≤0.05) when the GIANT and arcOGEN GWAS were compared. For signals with p≤0.001 we found 17 shared signals between osteoarthritis and height and four between osteoarthritis and BMI. However, only one of the height or BMI signals that had shown evidence of association with osteoarthritis in the arcOGEN GWAS was also associated with osteoarthritis in the independent dataset: rs12149832, within the FTO gene (combined p=2.3×10−5). As expected, this signal was attenuated when we adjusted for BMI.ConclusionsWe found a significant excess of shared signals between both osteoarthritis and height and osteoarthritis and BMI, suggestive of a common genetic aetiology. However, only one signal showed association with osteoarthritis when followed up in a new dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.