Resource provisioning in the cloud is the most popular business model for any service provider due to profit that is based on how resources are distributed among users in Industry 4.0. Moreover, much research carried out to provide a better resource provisioning system to service providers; however, efficient resource provisioning may save the environments too. This study presents an extensive analysis of different resource provisioning systems based on concert parameters. More than 250 relative research articles have been considered for this study, out of these 125 articles has been processed for comparative analysis on the basis of different performance metrics. This study highlights the classifications of resource management techniques, objective functions, and open research challenges and issues while analyzing resource management techniques. It also provides the depth knowledge of uses of performance metrics utilization based on its classifications.
In cloud computing, applications, administrations, and assets have a place with various associations with various goals. Elements in the cloud are self-sufficient and self-adjusting. In such a collaborative environment, the scheduling decision on available resources is a challenge given the decentralized nature of the environment. Fault tolerance is an utmost challenge in the task scheduling of available resources. In this paper, self-healing fault tolerance techniques have been introducing to detect the faulty resources and measured the best resource value through CPU, RAM, and bandwidth utilization of each resource. Through the self-healing method, less than threshold values have been considering as a faulty resource and separate from the resource pool. The workloads submitted by the user have been assigned to the available best resource. The proposed method has been simulated in cloudsim and compared the multi-objective performance metrics with existing methods, and it is observed that the proposed method performs utmost.
Cloud computing is a platform where services are provided through the internet either free of cost or rent basis. Many cloud service providers (CSP) offer cloud services on the rental basis. Due to increasing demand for cloud services, the existing infrastructure needs to be scale. However, the scaling comes at the cost of heavy energy consumption due to the inclusion of a number of data centers, and servers. The extraneous power consumption affects the operating costs, which in turn, affects its users. In addition, CO2 emissions affect the environment as well. Moreover, inadequate allocation of resources like servers, data centers, and virtual machines increases operational costs. This may ultimately lead to customer distraction from the cloud service. In all, an optimal usage of the resources is required. This paper proposes to calculate different multi-objective functions to find the optimal solution for resource utilization and their allocation through an improved Antlion (ALO) algorithm. The proposed method simulated in cloudsim environments, and compute energy consumption for different workloads quantity and it increases the performance of different multi-objectives functions to maximize the resource utilization. It compared with existing frameworks and experiment results shows that the proposed framework performs utmost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.