Objective: To report long-term efficacy and safety results of the SANTE trial investigating deep brain stimulation of the anterior nucleus of the thalamus (ANT) for treatment of localizationrelated epilepsy.Methods: This long-term follow-up is a continuation of a previously reported trial of 5-vs 0-V ANT stimulation. Long-term follow-up began 13 months after device implantation with stimulation parameters adjusted at the investigators' discretion. Seizure frequency was determined using daily seizure diaries.Results: The median percent seizure reduction from baseline at 1 year was 41%, and 69% at 5 years. The responder rate ($50% reduction in seizure frequency) at 1 year was 43%, and 68% at 5 years. In the 5 years of follow-up, 16% of subjects were seizure-free for at least 6 months. There were no reported unanticipated adverse device effects or symptomatic intracranial hemorrhages. The Liverpool Seizure Severity Scale and 31-item Quality of Life in Epilepsy measure showed statistically significant improvement over baseline by 1 year and at 5 years (p , 0.001).Conclusion: Long-term follow-up of ANT deep brain stimulation showed sustained efficacy and safety in a treatment-resistant population. Classification of evidence:This long-term follow-up provides Class IV evidence that for patients with drug-resistant partial epilepsy, anterior thalamic stimulation is associated with a 69% reduction in seizure frequency and a 34% serious device-related adverse event rate at 5 years. Approximately 3 million people in the United States have epilepsy and approximately 30% remain resistant to medical treatment. Some of these patients are candidates for resective surgery.1,2 For those who are not surgical candidates, or who continue to have seizures after surgery, neuromodulation may offer a viable therapeutic option. Several pilot studies, [3][4][5][6] and recent trials including the Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy (SANTE) trial 7 and a trial of responsive cortical stimulation, 8 have demonstrated reduction in seizures. The SANTE trial in 110 subjects with localization-related epilepsy found that seizures were significantly reduced by stimulation. 7 We now report the 5-year efficacy and safety outcomes of this trial.METHODS The SANTE trial 7 utilized a design with a 3-month baseline, 1-month postoperative recovery, followed by 3 months of double-blind treatment randomized to 5 V or 0 V of stimulation, then an open-label conversion of all subjects to 5-V stimulation for 9
Grid cells in the entorhinal cortex appear to represent spatial location via a triangular coordinate system. Such cells, which have been identified in rats, bats, and monkeys, are believed to support a wide range of spatial behaviors. By recording neuronal activity from neurosurgical patients performing a virtual-navigation task we identified cells exhibiting grid-like spiking patterns in the human brain, suggesting that humans and simpler animals rely on homologous spatial-coding schemes.
SUMMARYObjective: To describe mesial temporal lobe ablated volumes, verbal memory, and surgical outcomes in patients with medically intractable mesial temporal lobe epilepsy (mTLE) treated with magnetic resonance imaging (MRI)-guided stereotactic laser interstitial thermal therapy (LiTT). Methods: We prospectively tracked seizure outcome in 20 patients at Thomas Jefferson University Hospital with drug-resistant mTLE who underwent MRI-guided LiTT from December 2011 to December 2014. Surgical outcome was assessed at 6 months, 1 year, 2 years, and at the most recent visit. Volume-based analysis of ablated mesial temporal structures was conducted in 17 patients with mesial temporal sclerosis (MTS) and results were compared between the seizure-free and not seizure-free groups. Results: Following LiTT, proportions of patients who were free of seizures impairing consciousness (including those with auras only) are as follows: 8 of 15 patients (53%, 95% confidence interval [CI] 30.1-75.2%) after 6 months, 4 of 11 patients (36.4%, 95% CI 14.9-64.8%) after 1 year, 3 of 5 patients (60%, 95% CI 22.9-88.4%) at 2-year followup. Median follow-up was 13.4 months after LiTT (range 1.3 months to 3.2 years). Seizure outcome after LiTT suggests an all or none response. Four patients had anterior temporal lobectomy (ATL) after LiTT; three are seizure-free. There were no differences in total ablated volume of the amygdalohippocampus complex or individual volumes of hippocampus, amygdala, entorhinal cortex, parahippocampal gyrus, and fusiform gyrus between seizure-free and non-seizure-free patients. Contextual verbal memory performance was preserved after LiTT, although decline in noncontextual memory task scores were noted. Significance: We conclude that MRI-guided stereotactic LiTT is a safe alternative to ATL in patients with medically intractable mTLE. Individualized assessment is warranted to determine whether the reduced odds of seizure freedom are worth the reduction in risk, discomfort, and recovery time. Larger prospective studies are needed to confirm our preliminary findings, and to define optimal ablation volume and ideal structures for ablation.
Purpose: To assess magnetic resonance imaging (MRI)-related heating for a neurostimulation system (Activa Tremor Control System, Medtronic, Minneapolis, MN) used for chronic deep brain stimulation (DBS). Materials and Methods:Different configurations were evaluated for bilateral neurostimulators (Soletra® Model 7426), extensions, and leads to assess worst-case and clinically relevant positioning scenarios. In vitro testing was performed using a 1.5-T/64-MHz MR system and a gelfilled phantom designed to approximate the head and upper torso of a human subject. MRI was conducted using the transmit/receive body and transmit/receive head radio frequency (RF) coils. Various levels of RF energy were applied with the transmit/receive body (whole-body averaged specific absorption rate (SAR); range, 0.98 -3.90 W/kg) and transmit/receive head (whole-body averaged SAR; range, 0.07-0.24 W/kg) coils. A fluoroptic thermometry system was used to record temperatures at multiple locations before (1 minute) and during (15 minutes) MRI.Results: Using the body RF coil, the highest temperature changes ranged from 2.5°-25.3°C. Using the head RF coil, the highest temperature changes ranged from 2.3°-7.1°C.Thus, these findings indicated that substantial heating occurs under certain conditions, while others produce relatively minor, physiologically inconsequential temperature increases. Conclusion:The temperature increases were dependent on the type of RF coil, level of SAR used, and how the lead wires were positioned. Notably, the use of clinically relevant positioning techniques for the neurostimulation system and low SARs commonly used for imaging the brain generated little heating. Based on this information, MR safety guidelines are provided. These observations are restricted to the tested neurostimulation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.