We present the initial phase of the Korean Genome Project (Korea1K), including 1094 whole genomes (sequenced at an average depth of 31×), along with data of 79 quantitative clinical traits. We identified 39 million single-nucleotide variants and indels of which half were singleton or doubleton and detected Korean-specific patterns based on several types of genomic variations. A genome-wide association study illustrated the power of whole-genome sequences for analyzing clinical traits, identifying nine more significant candidate alleles than previously reported from the same linkage disequilibrium blocks. Also, Korea1K, as a reference, showed better imputation accuracy for Koreans than the 1KGP panel. As proof of utility, germline variants in cancer samples could be filtered out more effectively when the Korea1K variome was used as a panel of normals compared to non-Korean variome sets. Overall, this study shows that Korea1K can be a useful genotypic and phenotypic resource for clinical and ethnogenetic studies.
More than 300 million people worldwide experience depression; annually, ~800,000 people die by suicide. Unfortunately, conventional interview-based diagnosis is insufficient to accurately predict a psychiatric status. We developed machine learning models to predict depression and suicide risk using blood methylome and transcriptome data from 56 suicide attempters (SAs), 39 patients with major depressive disorder (MDD), and 87 healthy controls. Our random forest classifiers showed accuracies of 92.6% in distinguishing SAs from MDD patients, 87.3% in distinguishing MDD patients from controls, and 86.7% in distinguishing SAs from controls. We also developed regression models for predicting psychiatric scales with R2 values of 0.961 and 0.943 for Hamilton Rating Scale for Depression–17 and Scale for Suicide Ideation, respectively. Multi-omics data were used to construct psychiatric status prediction models for improved mental health treatment.
Background DNBSEQ-T7 is a new whole-genome sequencer developed by Complete Genomics and MGI using DNA nanoball and combinatorial probe anchor synthesis technologies to generate short reads at a very large scale—up to 60 human genomes per day. However, it has not been objectively and systematically compared against Illumina short-read sequencers. Findings By using the same KOREF sample, the Korean Reference Genome, we have compared 7 sequencing platforms including BGISEQ-500, DNBSEQ-T7, HiSeq2000, HiSeq2500, HiSeq4000, HiSeqX10, and NovaSeq6000. We measured sequencing quality by comparing sequencing statistics (base quality, duplication rate, and random error rate), mapping statistics (mapping rate, depth distribution, and percent GC coverage), and variant statistics (transition/transversion ratio, dbSNP annotation rate, and concordance rate with single-nucleotide polymorphism [SNP] genotyping chip) across the 7 sequencing platforms. We found that MGI platforms showed a higher concordance rate for SNP genotyping than HiSeq2000 and HiSeq4000. The similarity matrix of variant calls confirmed that the 2 MGI platforms have the most similar characteristics to the HiSeq2500 platform. Conclusions Overall, MGI and Illumina sequencing platforms showed comparable levels of sequencing quality, uniformity of coverage, percent GC coverage, and variant accuracy; thus we conclude that the MGI platforms can be used for a wide range of genomics research fields at a lower cost than the Illumina platforms.
BackgroundLong DNA reads produced by single molecule and pore-based sequencers are more suitable for assembly and structural variation discovery than short read DNA fragments. For de novo assembly, PacBio and Oxford Nanopore Technologies (ONT) are favorite options. However, PacBio’s SMRT sequencing is expensive for a full human genome assembly and costs over 40,000 USD for 30x coverage as of 2019. ONT PromethION sequencing, on the other hand, is one-twelfth the price of PacBio for the same coverage. This study aimed to compare the cost-effectiveness of ONT PromethION and PacBio’s SMRT sequencing in relation to the quality.FindingsWe performed whole genome de novo assemblies and comparison to construct an improved version of KOREF, the Korean reference genome, using sequencing data produced by PromethION and PacBio. With PromethION, an assembly using sequenced reads with 64x coverage (193 Gb, 3 flowcell sequencing) resulted in 3,725 contigs with N50s of 16.7 Mbp and a total genome length of 2.8 Gbp. It was comparable to a KOREF assembly constructed using PacBio at 62x coverage (188 Gbp, 2,695 contigs and N50s of 17.9 Mbp). When we applied Hi-C-derived long-range mapping data, an even higher quality assembly for the 64x coverage was achieved, resulting in 3,179 scaffolds with an N50 of 56.4 Mbp.ConclusionThe pore-based PromethION approach provides a good quality chromosome-scale human genome assembly at a low cost with long maximum contig and scaffold lengths and is more cost-effective than PacBio at comparable quality measurements.
Koreans are thought to be an ethnic group of admixed northern and southern subgroups. However, the exact genetic origins of these two remain unclear. In addition, the past admixture is presumed to have taken place on the Korean peninsula, but there is no genomic scale analysis exploring the origin, composition, admixture, or the past migration of Koreans. Here, 88 Korean genomes compared with 91 other present-day populations showed two major genetic components of East Siberia and Southeast Asia. Additional paleogenomic analysis with 115 ancient genomes from Pleistocene hunter-gatherers to Iron Age farmers showed a gradual admixture of Tianyuan (40 ka) and Devil’s gate (8 ka) ancestries throughout East Asia and East Siberia up until the Neolithic era. Afterward, the current genetic foundation of Koreans may have been established through a rapid admixture with ancient Southern Chinese populations associated with Iron Age Cambodians. We speculate that this admixing trend initially occurred mostly outside the Korean peninsula followed by continuous spread and localization in Korea, corresponding to the general admixture trend of East Asia. Over 70% of extant Korean genetic diversity is explained to be derived from such a recent population expansion and admixture from the South.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.