SummaryEducational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals1. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample1,2 of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease.
Highlights d 102 genes implicated in risk for autism spectrum disorder (ASD genes, FDR % 0.1) d Most are expressed and enriched early in excitatory and inhibitory neuronal lineages d Most affect synapses or regulate other genes; how these roles dovetail is unknown d Some ASD genes alter early development broadly, others appear more specific to ASD
A genome-wide association study of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent SNPs are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (R2 ≈ 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for ≈ 2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics.
SummaryWe present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n=35,584 total samples, 11,986 with ASD). Using an enhanced Bayesian framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate ≤ 0.1. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained for severe neurodevelopmental delay, while 53 show higher frequencies in individuals ascertained for ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most of the risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In human cortex single-cell gene expression data, expression of risk genes is enriched in both excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory/inhibitory imbalance underlying ASD.
Previously we have shown that nonsyndromic cleft lip with or without cleft palate (NSCL/P)1, is strongly associated with SNPs in Interferon Regulatory Factor 6 (IRF6)2. Here, multispecies sequence comparisons identify a common SNP (rs642961, G>A) in a novel IRF6 enhancer. The A allele is significantly overtransmitted (P=1×10−11) in families with NSCL/P, in particular with cleft lip (CL) but not cleft palate. Further, there is a dosage effect of the A allele, with the relative risk for CL 1.68 for the AG genotype and 2.40 for the AA genotype. EMSA and ChIP assays demonstrate that the risk allele disrupts the binding site of transcription factor AP-2α and expression analysis in the mouse localizes the enhancer activity to craniofacial and limb structures. Our findings place IRF6 and AP-2α in the same developmental pathway and identify a high frequency variant in a regulatory element contributing substantially to a common, complex disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.