Cardiomyocyte remodeling, which includes partial dedifferentiation of cardiomyocytes, is a process that occurs during both acute and chronic disease processes. Here, we demonstrate that oncostatin M (OSM) is a major mediator of cardiomyocyte dedifferentiation and remodeling during acute myocardial infarction (MI) and in chronic dilated cardiomyopathy (DCM). Patients suffering from DCM show a strong and lasting increase of OSM expression and signaling. OSM treatment induces dedifferentiation of cardiomyocytes and upregulation of stem cell markers and improves cardiac function after MI. Conversely, inhibition of OSM signaling suppresses cardiomyocyte remodeling after MI and in a mouse model of DCM, resulting in deterioration of heart function after MI but improvement of cardiac performance in DCM. We postulate that dedifferentiation of cardiomyocytes initially protects stressed hearts but fails to support cardiac structure and function upon continued activation. Manipulation of OSM signaling provides a means to control the differentiation state of cardiomyocytes and cellular plasticity.
Tumor-associated MΦ play a central role in lung cancer growth and metastasis, with bidirectional cross-talk between MΦ and cancer cells via CCR2 and CX3CR1 signaling as a central underlying mechanism. These findings suggest that the therapeutic strategy of blocking CCR2 and CX3CR1 may prove beneficial for halting lung cancer progression.
Rationale:
Activated cardiac fibroblasts (CF) are crucial players in the cardiac damage response; excess fibrosis, however, may result in myocardial stiffening and heart failure development. Inhibition of activated CF has been suggested as a therapeutic strategy in cardiac disease, but whether this truly improves cardiac function is unclear.
Objective:
To study the effect of CF ablation on cardiac remodeling.
Methods and Results:
We characterized subgroups of murine CF by single-cell expression analysis and identified periostin as the marker showing the highest correlation to an activated CF phenotype. We generated bacterial artificial chromosome–transgenic mice allowing tamoxifen-inducible Cre expression in periostin-positive cells as well as their diphtheria toxin-mediated ablation. In the healthy heart, periostin expression was restricted to valvular fibroblasts; ablation of this population did not affect cardiac function. After chronic angiotensin II exposure, ablation of activated CF resulted in significantly reduced cardiac fibrosis and improved cardiac function. After myocardial infarction, ablation of periostin-expressing CF resulted in reduced fibrosis without compromising scar stability, and cardiac function was significantly improved. Single-cell transcriptional analysis revealed reduced CF activation but increased expression of prohypertrophic factors in cardiac macrophages and cardiomyocytes, resulting in localized cardiomyocyte hypertrophy.
Conclusions:
Modulation of the activated CF population is a promising approach to prevent adverse cardiac remodeling in response to angiotensin II and after myocardial infarction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.