DNA damage checkpoint genes, such as p53, are frequently mutated in human cancer, but the selective pressure for their inactivation remains elusive. We analysed a panel of human lung hyperplasias, all of which retained wild-type p53 genes and had no signs of gross chromosomal instability, and found signs of a DNA damage response, including histone H2AX and Chk2 phosphorylation, p53 accumulation, focal staining of p53 binding protein 1 (53BP1) and apoptosis. Progression to carcinoma was associated with p53 or 53BP1 inactivation and decreased apoptosis. A DNA damage response was also observed in dysplastic nevi and in human skin xenografts, in which hyperplasia was induced by overexpression of growth factors. Both lung and experimentally-induced skin hyperplasias showed allelic imbalance at loci that are prone to DNA double-strand break formation when DNA replication is compromised (common fragile sites). We propose that, from its earliest stages, cancer development is associated with DNA replication stress, which leads to DNA double-strand breaks, genomic instability and selective pressure for p53 mutations.
The accurate execution of DNA replication requires a strict control of the replication licensing factors hCdt1 and hCdc6. The role of these key replication molecules in carcinogenesis has not been clarified. To examine how early during cancer development deregulation of these factors occurs, we investigated their status in epithelial lesions covering progressive stages of hyperplasia, dysplasia, and full malignancy, mostly from the same patients.
Numerous upstream stimulatory and inhibitory signals converge to the pRb/E2F pathway, which governs cell-cycle progression, but the information concerning alterations of E2F-1 in primary malignancies is very limited. Several in vitro studies report that E2F-1 can act either as an oncoprotein or as a tumour suppressor protein. In view of this dichotomy in its functions and its critical role in cell cycle control, this study examined the following four aspects of E2F-1 in a panel of 87 non-small cell lung carcinomas (NSCLCs), previously analysed for defects in the pRb-p53-MDM2 network: firstly, the status of E2F-1 at the protein, mRNA and DNA levels; secondly, its relationship with the kinetic parameters and genomic instability of the tumours; thirdly, its association with the status of its transcriptional co-activator CBP, downstream target PCNA and main cell cycle regulatory and E2F-1-interacting molecules pRb, p53 and MDM2; and fourthly, its impact on clinical outcome. The protein levels of E2F-1 and its co-activator CBP were significantly higher in the tumour area than in the corresponding normal epithelium (p<0.001). E2F-1 overexpression was associated with increased E2F-1 mRNA levels in 82% of the cases examined. The latter finding, along with the low frequency of E2F-1 gene amplification observed (9%), suggests that the main mechanism of E2F-1 protein overexpression in NSCLCs is deregulation at the transcriptional level. Mutational analysis revealed only one sample with asomatic mutation at codon 371 (Glu-->Asp) and one carrying a polymorphism at codon 393 (Gly-->Ser). Carcinomas with increased E2F-1 positivity demonstrated a significant increase in their growth indexes (r=0.402, p=0.001) and were associated with adverse prognosis (p=0.033 by Cox regression analysis). The main determinant of the positive association with growth was the parallel increase between E2F-1 staining and proliferation (r=0.746, p<0.001), whereas apoptosis was not influenced by the status of E2F-1. Moreover, correlation with the status of the pRb-p53-MDM2 network showed that the cases with aberrant pRb expression displayed significantly higher E2F-1 indexes (p=0.033), while a similar association was noticed in the group of carcinomas with deregulation of the p53-MDM2 feedback loop. In conclusion, the results suggest that E2F-1 overexpression may contribute to the development of NSCLCs by promoting proliferation and provide evidence that this role is further enhanced in a genetic background with deregulated pRb-p53-MDM2 circuitry.
SummaryCellular senescence contributes to organismal development, aging, and diverse pathologies, yet available assays to detect senescent cells remain unsatisfactory. Here, we designed and synthesized a lipophilic, biotin‐linked Sudan Black B (SBB) analogue suitable for sensitive and specific, antibody‐enhanced detection of lipofuscin‐containing senescent cells in any biological material. This new hybrid histo‐/immunochemical method is easy to perform, reliable, and universally applicable to assess senescence in biomedicine, from cancer research to gerontology.
, on gene and protein structure, its transcriptional and translational regulation, and its role in human physiology and pathology, focusing on cancer development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.