Detection of DNA molecules and possible chemotherapy-induced changes in its structure has been the goal of researchers using rapid, sensitive and inexpensive approaches. Therefore, the aim of this study was to fabricate a new electrochemical DNA biosensor using pencil graphite electrodes modified with polypyrrole/Ce doped hexagonal nickel oxide nanodisks or PP/Ce-doped H-NiO-ND composites for determination of Abemaciclib (AMC) and ds-DNA molecules. The DNA biosensor was prepared by immobilizing ds-DNA on the surface of PP/Ce-doped H-NiO-ND/PGE. Differential pulse voltammetry (DPV) was used to electrochemically detect AMC. The results elucidate the extremely high sensitivity of the ds-DNA/PP/Ce-doped H-NiO-ND/PGE biosensor to AMC, with a narrow detection limit of 2.7 nM and a lengthy linear range of 0.01–600.0 μM. The admirable performance of as-fabricated biosensor could be related to the active reaction sites and the unique electrochemical response related to the nanocomposites by enhancing ds-DNA stabilization and accelerating electron transfer on the surface of electrode.
In this letter, we theoretical investigated electromagnetically induced phase grating in a three-level quantum system. The quantum system interacts with two weak probe and signal lights and a strong coupling light. We show that in two different parametric conditions i.e. in electromagnetically induced transparency (EIT) and Autler–Townes splitting (ATS) regimes, the probe and signal beams can be diffracted into the high-order directions. We realized that in the EIT regime, some of probe energy transfer from zero order to the high orders, while in ATS regime most of probe energy transfers to the high orders and small portion remain in the zero order.
In this letter we have proposed a four-level graphene monolayer system for identifying the topological charge of Laguerre–Gaussian light. Here, we have shown that due to the four-wave mixing mechanism in the monolayer graphene system, a weak signal beam can be generated due to quantum coherence and interference effect. We have discussed the spatially dependent linear absorption spectrums of the weak probe and new generated signal beams via quantum mechanical density matrix formalism. We have found that by numbering the spot areas of the probe and signal beams, one can realize the topological charge of the Laguerre–Gaussian beam interacts by monolayer graphene system. Moreover, we have realized that for some topological charge the new generated signal beam can be amplified in the graphene system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.