We present a case of a 32-year-old diabetic woman with Prader–Willi syndrome who developed severe ketoacidosis caused by a sodium-glucose cotransporter 2 (SGLT2) inhibitor, a novel class of antihyperglycemic agents, during a strict low-carbohydrate diet. At admission, a serum glucose level of 191 mg/dL was relatively low, though laboratory evaluations showed severe ketoacidosis. This is the first report of ketoacidosis caused by a SGLT2 inhibitor. It is necessary to not only pay attention when using a SGLT2 inhibitor in patients following a low-carbohydrate diet, but also to start a low-carbohydrate diet in patients treated with a SGLT2 inhibitor because of a high risk for developing ketoacidosis.
Basic fibroblast growth factor (bFGF) stimulates angiogenesis and induces neural cell regeneration. We investigated the effects of bFGF on diabetic neuropathy in streptozotocin-induced diabetic rats. Diabetic rats were treated with human recombinant bFGF as follows: 1) intravenous administration, 2) intramuscular injection into thigh and soleus muscles with cross-linked gelatin hydrogel (CGH), and 3) intramuscular injection with saline. Ten or 30 days later, the motor nerve conduction velocity (MNCV) of the sciatic-tibial and caudal nerves, sensitivity to mechanical stimuli, sciatic nerve blood flow (SNBF), and retinal blood flow (RBF) were measured. Delayed MNCV in the sciatic-tibial and caudal nerves, hypoalgesia, and reduced SNBF in diabetic rats were all ameliorated by intravenous administration of bFGF after 10, but not 30, days. Intramuscular injection of bFGF with CGH also improved sciatic-tibial MNCV, hypoalgesia, and SNBF after 10 and 30 days, but caudal MNCV was not improved. However, intramuscular injection of bFGF with saline had no significant effects. bFGF did not significantly alter RBF in either normal or diabetic rats. These observations suggest that bFGF could have therapeutic value for diabetic neuropathy and that CGH could play important roles as a carrier of bFGF.
These observations suggest that C-peptide could prevent diabetic macroangiopathy by inhibiting smooth muscle cell growth and ameliorating glucose utilisation in smooth muscle cells. C-peptide may thus be a novel agent for treating diabetic macroangiopathy in patients with type 1 and type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.