Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut−/−) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut−/− mice. Glucose-responsive ATP release was also absent in pancreatic β-cells in Vnut−/− mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut−/− mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis.
Our data indicate that at least one susceptibility locus for schizophrenia is situated within or very close to the GRM3 region in the Japanese patients.
BackgroundWe previously performed systematic association studies of glutamate receptor gene family members with schizophrenia, and found positive associations of polymorphisms in the GRM3 (a gene of metabotropic glutamate receptor 3: mGluR3) with the disorder. Physiological roles of GRM3 in brain functions and its functional roles in the pathogenesis of schizophrenia remain to be resolved.ResultsWe generated mGluR3 knockout (KO) mice and conducted comprehensive behavioral analyses. KO mice showed hyperactivity in the open field, light/dark transition, and 24-hour home cage monitoring tests, impaired reference memory for stressful events in the Porsolt forced swim test, impaired contextual memory in cued and contextual fear conditioning test, and impaired working memory in the T-Maze forced alternation task test. Hyperactivity and impaired working memory are known as endophenotypes of schizophrenia. We examined long-term synaptic plasticity by assessing long-term potentiation (LTP) in the CA1 region in the hippocampi of KO and wild-type (WT) mice. We observed no differences in the amplitude of LTP between the two genotypes, suggesting that mGluR3 is not essential for LTP in the CA1 region of the mouse hippocampus. As hyperactivity is typically associated with increased dopaminergic transmission, we performed in vivo microdialysis measurements of extracellular dopamine in the nucleus accumbens of KO and WT mice. We observed enhancements in the methamphetamine (MAP)-induced release of dopamine in KO mice.ConclusionsThese results demonstrate that a disturbance in the glutamate-dopamine interaction may be involved in the pathophysiology of schizophrenia-like behavior, such as hyperactivity in mGluR3 KO mice.
The glutamatergic dysfunction hypothesis suggests that genes involved in the glutamate neurotransmitter system are candidates for schizophrenia-susceptibility genes. We have been conducting systematic studies of the association between glutamate receptors and schizophrenia. We report on a positive association of some haplotypes of the AMPA receptor subunit GluR4 gene (GRIA4) with schizophrenia. We genotyped 100 Japanese schizophrenics and 100 controls for six single nucleotide polymorphism (SNP) markers distributed at intervals of about 50 kb in the GRIA4 region, and estimated the degree of linkage disequilibrium (LD) between the SNPs. We constructed haplotypes of the SNPs in LD using the EM algorithm to test their association with schizophrenia. Significant associations were detected for the combination of SNP4-5 (chi(2) = 12.54, df = 3, P = 0.0057, P = 0.029 with Bonferroni correction) and for the combination of SNP3-4-5 (chi(2) = 18.9, df = 7, P = 0.0085, P = 0.043 with Bonferroni correction). These results suggest that at least one susceptibility locus for schizophrenia is located within or very close to the GRIA4 region in Japanese.
The biological and molecular properties of tetrodotoxin (TTX)-sensitive voltage-gated Na(+) currents (I(Na)) in murine vas deferens myocytes were investigated using patch-clamp techniques and molecular biological analyses. In whole-cell configuration, a fast, transient inward current was evoked in the presence of Cd(2+), and was abolished by TTX (K(d) = 11.2 nM), mibefradil (K(d) = 3.3 microM), and external replacement of Na(+) with monovalent cations (TEA(+), Tris(+), and NMDG(+)). The fast transient inward current was enhanced by veratridine, an activator of voltage-gated Na(+) channels, suggesting that the fast transient inward current was a TTX-sensitive I(Na). The values for half-maximal (V(half)) inactivation and activation of I(Na) were -46.3 mV and -26.0 mV, respectively. RT-PCR analysis revealed the expression of Scn1a, 2a, and 8a transcripts. The Scn8a transcript and the alpha-subunit protein of Na(V)1.6 were detected in smooth muscle layers. Using Na(V)1.6-null mice (Na(V)1.6(-/-)) lacking the expression of the Na(+) channel gene, Scn8a, I(Na) were not detected in dispersed smooth muscle cells from the vas deferens, while TTX-sensitive I(Na) were recorded in their wild-type (Na(V)1.6(+/+)) littermates. This study demonstrates that the molecular identity of the voltage-gated Na(+) channels responsible for the TTX-sensitive I(Na) in murine vas deferens myocytes is primarily Na(V)1.6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.