Defects are detrimental for optoelectronics devices, such as stacking faults can form carrier-transportation barriers, and foreign impurities (Au) with deep-energy levels can form carrier traps and nonradiative recombination centers. Here, self-catalyzed p-type GaAs nanowires (NWs) with a pure zinc blende (ZB) structure are first developed, and then a photodetector made from these NWs is fabricated. Due to the absence of stacking faults and suppression of large amount of defects with deep energy levels, the photodetector exhibits room-temperature high photoresponsivity of 1.45 × 10 A W and excellent specific detectivity (D*) up to 1.48 × 10 Jones for a low-intensity light signal of wavelength 632.8 nm, which outperforms previously reported NW-based photodetectors. These results demonstrate these self-catalyzed pure-ZB GaAs NWs to be promising candidates for optoelectronics applications.
Accurate design of high‐performance 3D surface‐enhanced Raman scattering (SERS) probes is the desired target, which is possibly implemented with a prerequisite of quantifying formidable multiple coupling effects involved. Herein, by combining theory and experiments on 3D periodic Au/SiO
2
nanogrid models, a generalized methodology of accurately designing high performance 3D SERS probes is developed. Structural symmetry, dimensions, Au roughness, and polarization are successfully correlated quantitatively to intrinsic localized electromagnetic field (EMF) enhancements by calculating surface plasmon polariton (SPP), localized surface plasmon resonance (LSPR), optical standing wave effects, and their couplings theoretically, which is experimentally verified. The hexagonal SERS probes optimized by this methodology realize over two orders of magnitudes (405 times) improvement of detection limit for Rhodamine 6G model molecules (2.17 × 10
−11
m
) compared to the unoptimized probes with the same number density of hot spots, an enhancement factor of 3.4 × 10
8
, a uniformity of 5.52%, and are successfully applied to the detection of 5 × 10
−11
m
Hg ions in water. This unambiguously results from the Au roughness‐independent extra 144% contribution of LSPR effects excited by SPP interference waves as secondary sources, which is very unusual to be beyond the conventional recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.