Pannexin1 (PANX1) is probably best understood as an ATP release channel involved in paracrine signaling. Given its ubiquitous expression, PANX1 pathogenic variants would be expected to lead to disorders involving multiple organ systems. Using whole exome sequencing, we discovered the first patient with a homozygous PANX1 variant (c.650G3 A) resulting in an arginine to histidine substitution at position 217 (p.Arg217His). The 17-year-old female has intellectual disability, sensorineural hearing loss requiring bilateral cochlear implants, skeletal defects, including kyphoscoliosis, and primary ovarian failure. Her consanguineous parents are each heterozygous for this variant but are not affected by the multiorgan syndromes noted in the proband. Expression of the p.Arg217His mutant in HeLa, N2A, HEK293T, and Ad293 cells revealed normal PANX1 glycosylation and cell surface trafficking. Dye uptake, ATP release, and electrophysiological measurements revealed p.Arg217His to be a loss-of-function variant. Co-expression of the mutant with wild-type PANX1 suggested the mutant was not dominantnegative to PANX1 channel function. Collectively, we demonstrate a PANX1 missense change associated with human disease in the first report of a "PANX1-related disorder."Pannexins are a new class of large-pore channels that were discovered early in the new millennium (1, 2
Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling. Animal models suggest that RERE deficiency might contribute to many of the structural and developmental birth defects and medical problems seen in individuals with 1p36 deletion syndrome, although human evidence supporting this role has been lacking. In this report, we describe ten individuals with intellectual disability, developmental delay, and/or autism spectrum disorder who carry rare and putatively damaging changes in RERE. In all cases in which both parental DNA samples were available, these changes were found to be de novo. Associated features that were recurrently seen in these individuals included hypotonia, seizures, behavioral problems, structural CNS anomalies, ophthalmologic anomalies, congenital heart defects, and genitourinary abnormalities. The spectrum of defects documented in these individuals is similar to that of a cohort of 31 individuals with isolated 1p36 deletions that include RERE and are recapitulated in RERE-deficient zebrafish and mice. Taken together, our findings suggest that mutations in RERE cause a genetic syndrome and that haploinsufficiency of RERE might be sufficient to cause many of the phenotypes associated with proximal 1p36 deletions.
Wiedemann‐Steiner syndrome (WSS) is an autosomal dominant disorder caused by monoallelic variants in KMT2A and characterized by intellectual disability and hypertrichosis. We performed a retrospective, multicenter, observational study of 104 individuals with WSS from five continents to characterize the clinical and molecular spectrum of WSS in diverse populations, to identify physical features that may be more prevalent in White versus Black Indigenous People of Color individuals, to delineate genotype–phenotype correlations, to define developmental milestones, to describe the syndrome through adulthood, and to examine clinicians' differential diagnoses. Sixty‐nine of the 82 variants (84%) observed in the study were not previously reported in the literature. Common clinical features identified in the cohort included: developmental delay or intellectual disability (97%), constipation (63.8%), failure to thrive (67.7%), feeding difficulties (66.3%), hypertrichosis cubiti (57%), short stature (57.8%), and vertebral anomalies (46.9%). The median ages at walking and first words were 20 months and 18 months, respectively. Hypotonia was associated with loss of function (LoF) variants, and seizures were associated with non‐LoF variants. This study identifies genotype–phenotype correlations as well as race‐facial feature associations in an ethnically diverse cohort, and accurately defines developmental trajectories, medical comorbidities, and long‐term outcomes in individuals with WSS.
Our case series show that loss-of-function mutations in WAC cause a recognisable genetic syndrome characterised by a neurocognitive phenotype and facial dysmorphism. Our data highly suggest that WAC haploinsufficiency is responsible for most of the phenotypic features associated with deletions encompassing 10p11.23.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.