Interleukin-15 (IL-15) controls both the homeostasis and the peripheral activation of Natural Killer (NK) cells. The molecular basis for this duality of action remains unknown. Here we report that the metabolic checkpoint kinase mTOR is activated and boosts bioenergetic metabolism upon NK cell exposure to high concentrations of IL-15 whereas low doses of IL-15 only triggers the phosphorylation of the transcription factor STAT5. mTOR stimulates NK cell growth and nutrient uptake and positively feeds back onto the IL-15 receptor. This process is essential to sustain NK cell proliferation during development and acquisition of cytolytic potential upon inflammation or virus infection. The mTORC1 inhibitor rapamycin inhibits NK cell cytotoxicity both in mouse and human, which likely contribute to the immunosuppressant activities of this drug in different clinical settings.
This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.