This paper studies the economics of carbon-neutral synthetic fuel production from renewable electricity in remote areas where high-quality renewable resources are abundant. To this end, a graph-based optimisation modelling framework directly applicable to the strategic planning of remote renewable energy supply chains is proposed. More precisely, a hypergraph abstraction of planning problems is introduced, wherein nodes can be viewed as optimisation subproblems with their own parameters, variables, constraints and local objective. Nodes typically represent a subsystem such as a technology, a plant or a process. Hyperedges, on the other hand, express the connectivity between subsystems. The framework is leveraged to study the economics of carbon-neutral synthetic methane production from solar and wind energy in North Africa and its delivery to Northwestern European markets. The full supply chain is modelled in an integrated fashion, which makes it possible to accurately capture the interaction between various technologies on an hourly time scale. Results suggest that the cost of synthetic methane production and delivery would be slightly under 150 €/MWh (higher heating value) by 2030 for a system supplying 10 TWh annually and relying on a combination of solar photovoltaic and wind power plants, assuming a uniform weighted average cost of capital of 7%. A comprehensive sensitivity analysis is also carried out in order to assess the impact of various techno-economic parameters and assumptions on synthetic methane cost, including the availability of wind power plants, the investment costs of electrolysis, methanation and direct air capture plants, their operational flexibility, the energy consumption of direct air capture plants, and financing costs. The most expensive configuration (around 200 €/MWh) relies on solar photovoltaic power plants alone, while the cheapest configuration (around 88 €/MWh) makes use of a combination of solar PV and wind power plants and is obtained when financing costs are set to zero.
For pollinators such as bees, nectar mainly provides carbohydrates and pollen provides proteins, amino acids, and lipids to cover their nutritional needs. Here, to examine differences in pollinator resources, we compared the amino acid profiles and total amino acid contents of pollen from 32 common entomophilous plants in seven families. Our results showed that the amino acid profiles and contents in pollen samples differed according to the plant family and the chromatography method used, i.e., high-performance liquid chromatography (HPLC) versus ion exchange chromatography (IEX). Pollen from Boraginaceae species had the highest total amino acid contents (361.2–504 μg/mg) whereas pollen from the Malvaceae family had the lowest total amino acid contents (136–243.1 μg/mg). Calculating an amino acid score (AAS) that reflects pollen nutritional quality showed that slightly less than half of the species (19 out of 32) had the maximum nutritional score (AAS = 1) and offered high nutritional quality pollen amino acids for bee pollinators. Though they had high total amino acid contents, the amino acid composition of the studied Boraginaceae species and several members of the Fabaceae was not optimal, as their pollen was deficient in some essential amino acids, resulting in suboptimal amino acid scores (AAS < 0.7). Except for cysteine, the measured amino acid contents were higher using IEX chromatography than using HPLC. IEX chromatography is more robust and is to be preferred over HPLC in future amino acid analyses. Moreover, our observations show that some bee-pollinated species fail to provide complete amino acid resources for their pollinators. Although the implications for pollinator behavior remain to be studied, these deficiencies may force pollinators to forage from different species to obtain all nutritionial requirements.
Description of the subject. Current trends suggest an increasing future demand for conventional meats, which indicates a strong need to shift this dependency to other alternative protein sources such as insects. Literature. From a nutritional point of view, of all the insects consumed globally, grasshoppers are particularly important as a human food. Data from the literature regarding the nutrient composition, amino acid profile, fatty acid profile, mineral composition and vitamin content of grasshoppers as reviewed in this paper, suggest that a number of grasshopper species are a good source of nutrients. It also highlights some of the health related aspects that might arise from the consumption of grasshoppers, mostly linked to agricultural practices and the allergic response of sensitive individuals. The paper also summarizes some religious, social and economic factors that are associated with grasshopper consumption. Conclusions. The success of introducing grasshoppers as a novel food in western countries depends on changes in consumer attitudes. It would be interesting to develop food products derived from grasshoppers in a form acceptable to consumers. Furthermore, it is important to explore the food potential of some grasshopper species native to western countries and to develop their rearing methodologies to enhance availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.