Mast cells (MCs) are key effector cells in allergic reactions. However, the inhibitory mechanism that prevents excessive activation of MCs remains elusive. Here we show that leukocyte mono-immunoglobulin-like receptor 3 (LMIR3; also called CD300f) is a negative regulator of MC activation in vivo. LMIR3 deficiency exacerbated MC-dependent allergic responses in mice, including anaphylaxis, airway inflammation, and dermatitis. Both physical binding and functional reporter assays via an extracellular domain of LMIR3 showed that several extracellular lipids (including ceramide) and lipoproteins were possible ligands for LMIR3. Importantly, MCs were frequently surrounded by extracellular ceramide in vivo. Upon engagement of high-affinity immunoglobulin E receptor, extracellular ceramide-LMIR3 binding inhibited MC activation via immunoreceptor tyrosine-based inhibitory and switch motifs of LMIR3. Moreover, pretreatment with LMIR3-Fc fusion protein or antibody against either ceramide or LMIR3 interfered with this binding in vivo, thereby exacerbating passive cutaneous anaphylaxis. Thus, the interaction between extracellular ceramide and LMIR3 suppressed MC-dependent allergic responses.
Leukocyte mono-immunoglobulin (Ig)–like receptor 5 (LMIR5)/CD300b is a DAP12-coupled activating receptor predominantly expressed in myeloid cells. The ligands for LMIR have not been reported. We have identified T cell Ig mucin 1 (TIM1) as a possible ligand for LMIR5 by retrovirus-mediated expression cloning. TIM1 interacted only with LMIR5 among the LMIR family, whereas LMIR5 interacted with TIM4 as well as TIM1. The Ig-like domain of LMIR5 bound to TIM1 in the vicinity of the phosphatidylserine (PS)-binding site within the Ig-like domain of TIM1. Unlike its binding to TIM1 or TIM4, LMIR5 failed to bind to PS. LMIR5 binding did not affect TIM1- or TIM4-mediated phagocytosis of apoptotic cells, and stimulation with TIM1 or TIM4 induced LMIR5-mediated activation of mast cells. Notably, LMIR5 deficiency suppressed TIM1-Fc–induced recruitment of neutrophils in the dorsal air pouch, and LMIR5 deficiency attenuated neutrophil accumulation in a model of ischemia/reperfusion injury in the kidneys in which TIM1 expression is up-regulated. In that model, LMIR5 deficiency resulted in ameliorated tubular necrosis and cast formation in the acute phase. Collectively, our results indicate that TIM1 is an endogenous ligand for LMIR5 and that the TIM1–LMIR5 interaction plays a physiological role in immune regulation by myeloid cells.
Leukocyte mono-Ig-like receptor 3 (LMIR3) is an inhibitory receptor mainly expressed in myeloid cells. Coengagement of FcεRI and LMIR3 impaired cytokine production in bone marrow-derived mast cells (BMMCs) induced by FcεRI crosslinking alone. Mouse LMIR3 possesses five cytoplasmic tyrosine residues (Y241, Y276, Y289, Y303, Y325), among which Y241 and Y289 (Y241/289) or Y325 fit the consensus sequence of ITIM or immunotyrosine-based switch motif (ITSM), respectively. The inhibitory effect was abolished by the replacement of Y325 in addition to Y241/289 with phenylalanine (Y241/189/325/F) in accordance with the potential of Y241/289/325 to cooperatively recruit Src homology region 2 domain-containing phosphatase 1 (SHP)-1 or SHP-2. Intriguingly, LMIR3 crosslinking alone induced cytokine production in BMMCs expressing LMIR3 (Y241/276/289/303/325F) mutant as well as LMIR3 (Y241/289/325F). Moreover, coimmunoprecipitation experiments revealed that LMIR3 associated with ITAM-containing FcRγ. Analysis of FcRγ-deficient BMMCs demonstrated that both Y276/303 and FcRγ played a critical role in the activating function of this inhibitory receptor. Importantly, LMIR3 crosslinking enhanced cytokine production of BMMCs stimulated by LPS, while suppressing production stimulated by other TLR agonists or stem cell factor. Thus, an inhibitory receptor LMIR3 has a unique property to associate with FcRγ and thereby functions as an activating receptor in concert with TLR4 stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.