A cross-sectional study was conducted to determine the prevalence of and factors associated with Shiga toxin–producing Escherichia coli (STEC) in raw beef and ready-to-eat (RTE) beef products sold in 31 retail outlets in Pretoria, South Africa, and nearby areas. A total of 463 beef and RTE samples were screened for four STEC virulence genes (stx1, stx2, eaeA, and hlyA) and seven O-serogroups (O113, O157, O26, O91, O145, O111, and O103) with a multiplex PCR assay. The total aerobic plate count (TAPC) per gram was also determined. A total of 38 STEC isolates were recovered and characterized by conventional PCR assay and serotyping. The overall prevalence of STEC in the beef and RTE samples tested was 16.4% (76 of 463 samples; 95% confidence interval, 13 to 20%). The prevalence of STEC differed significantly by product type (P < 0.0001), with the highest prevalence (35%) detected in boerewors (spicy sausage). The STEC prevalences in minced beef, brisket, RTE cold beef, and biltong were 18, 13, 9, and 5%, respectively. The most frequently detected stx gene was stx2 (13%), and STEC serogroups from recovered isolates were detected at the following prevalences: O2, 15%; O8, 12%; O13, 15%; O20, 8%; O24, 3%; O39, 3%; O41, 8%; O71, 3%; O76, 3%; O150, 12%; and O174, 3%. A high proportion (77%) of the samples had TAPCs that exceeded the South African microbiological standards for meat export (5.0 log CFU/g). The prevalence of O157 STEC (16%) and the diversity of non-O157 STEC serogroups found in five common beef-based products from retail outlets in South Africa suggest exposure of raw beef and beef products to multiple contamination sources during carcass processing and/or cutting and handling at retail outlets. These data provide direct estimates of the potential health risk to consumers from undercooked contaminated products and indicate the need to improve sanitary practices during slaughter and processing of beef and beef-based RTE products. A risk-based surveillance system for STEC may be needed.
HIGHLIGHTS