Phase recovery from intensity-only measurements forms the heart of coherent imaging techniques and holography. In this study, we demonstrate that a neural network can learn to perform phase recovery and holographic image reconstruction after appropriate training. This deep learning-based approach provides an entirely new framework to conduct holographic imaging by rapidly eliminating twin-image and self-interference-related spatial artifacts. This neural network-based method is fast to compute and reconstructs phase and amplitude images of the objects using only one hologram, requiring fewer measurements in addition to being computationally faster. We validated this method by reconstructing the phase and amplitude images of various samples, including blood and Pap smears and tissue sections. These results highlight that challenging problems in imaging science can be overcome through machine learning, providing new avenues to design powerful computational imaging systems.
We demonstrate lensfree digital microscopy on a cellphone. This compact and light-weight holographic microscope installed on a cellphone does not utilize any lenses, lasers or other bulky optical components and it may offer a cost-effective tool for telemedicine applications to address various global health challenges. Weighing ~38 grams (<1.4 ounces), this lensfree imaging platform can be mechanically attached to the camera unit of a cellphone where the samples are loaded from the side, and are vertically illuminated by a simple light-emitting diode (LED). This incoherent LED light is then scattered from each micro-object to coherently interfere with the background light, creating the lensfree hologram of each object on the detector array of the cellphone. These holographic signatures captured by the cellphone permit reconstruction of microscopic images of the objects through rapid digital processing. We report the performance of this lensfree cellphone microscope by imaging various sized micro-particles, as well as red blood cells, white blood cells, platelets and a waterborne parasite (Giardia lamblia).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.