Deep learning has been transforming our ability to execute advanced inference tasks using computers. Here we introduce a physical mechanism to perform machine learning by demonstrating an all-optical diffractive deep neural network (DNN) architecture that can implement various functions following the deep learning-based design of passive diffractive layers that work collectively. We created 3D-printed DNNs that implement classification of images of handwritten digits and fashion products, as well as the function of an imaging lens at a terahertz spectrum. Our all-optical deep learning framework can perform, at the speed of light, various complex functions that computer-based neural networks can execute; will find applications in all-optical image analysis, feature detection, and object classification; and will also enable new camera designs and optical components that perform distinctive tasks using DNNs.
We present deep-learning-enabled super-resolution across different fluorescence microscopy modalities. This data-driven approach does not require numerical modeling of the imaging process or the estimation of a point-spread-function, and is based on training a generative adversarial network (GAN) to transform diffraction-limited input images into super-resolved ones. Using this Reprints and permissions information is available at www.nature.com/reprints.
We discuss unique features of lens-free computational imaging tools and report some of their emerging results for wide-field on-chip microscopy, such as the achievement of a numerical aperture (NA) of ~0.8–0.9 across a field of view (FOV) of more than 20 mm2 or an NA of ~0.1 across a FOV of ~18 cm2, which corresponds to an image with more than 1.5 gigapixels. We also discuss the current challenges that these computational on-chip microscopes face, shedding light on their future directions and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.