Summary Background Babies with low birthweight (<2500 g) are at increased risk of early mortality. However, low birthweight includes babies born preterm and with fetal growth restriction, and not all these infants have a birthweight less than 2500 g. We estimated the neonatal and infant mortality associated with these two characteristics in low-income and middle-income countries. Methods For this pooled analysis, we searched all available studies and identified 20 cohorts (providing data for 2 015 019 livebirths) from Asia, Africa, and Latin America that recorded data for birthweight, gestational age, and vital statistics through 28 days of life. Study dates ranged from 1982 through to 2010. We calculated relative risks (RR) and risk differences (RD) for mortality associated with preterm birth (<32 weeks, 32 weeks to <34 weeks, 34 weeks to <37 weeks), small-for-gestational-age (SGA; babies with birthweight in the lowest third percentile and between the third and tenth percentile of a US reference population), and preterm and SGA combinations. Findings Pooled overall RRs for preterm were 6·82 (95% CI 3·56–13·07) for neonatal mortality and 2·50 (1·48–4·22) for post-neonatal mortality. Pooled RRs for babies who were SGA (with birthweight in the lowest tenth percentile of the reference population) were 1·83 (95% CI 1·34–2·50) for neonatal mortality and 1·90 (1·32–2·73) for post-neonatal mortality. The neonatal mortality risk of babies who were both preterm and SGA was higher than that of babies with either characteristic alone (15·42; 9·11–26·12). Interpretation Many babies in low-income and middle-income countries are SGA. Preterm birth affects a smaller number of neonates than does SGA, but is associated with a higher mortality risk. The mortality risks associated with both characteristics extend beyond the neonatal period. Differentiation of the burden and risk of babies born preterm and SGA rather than with low birthweight could guide prevention and management strategies to speed progress towards Millennium Development Goal 4—the reduction of child mortality. Funding Bill & Melinda Gates Foundation.
SummaryBackgroundNational estimates for the numbers of babies born small for gestational age and the comorbidity with preterm birth are unavailable. We aimed to estimate the prevalence of term and preterm babies born small for gestational age (term-SGA and preterm-SGA), and the relation to low birthweight (<2500 g), in 138 countries of low and middle income in 2010.MethodsSmall for gestational age was defined as lower than the 10th centile for fetal growth from the 1991 US national reference population. Data from 22 birth cohort studies (14 low-income and middle-income countries) and from the WHO Global Survey on Maternal and Perinatal Health (23 countries) were used to model the prevalence of term-SGA births. Prevalence of preterm-SGA infants was calculated from meta-analyses.FindingsIn 2010, an estimated 32·4 million infants were born small for gestational age in low-income and middle-income countries (27% of livebirths), of whom 10·6 million infants were born at term and low birthweight. The prevalence of term-SGA babies ranged from 5·3% of livebirths in east Asia to 41·5% in south Asia, and the prevalence of preterm-SGA infants ranged from 1·2% in north Africa to 3·0% in southeast Asia. Of 18 million low-birthweight babies, 59% were term-SGA and 41% were preterm. Two-thirds of small-for-gestational-age infants were born in Asia (17·4 million in south Asia). Preterm-SGA babies totalled 2·8 million births in low-income and middle-income countries. Most small-for-gestational-age infants were born in India, Pakistan, Nigeria, and Bangladesh.InterpretationThe burden of small-for-gestational-age births is very high in countries of low and middle income and is concentrated in south Asia. Implementation of effective interventions for babies born too small or too soon is an urgent priority to increase survival and reduce disability, stunting, and non-communicable diseases.FundingBill & Melinda Gates Foundation by a grant to the US Fund for UNICEF to support the activities of the Child Health Epidemiology Reference Group (CHERG).
BackgroundStunting affects one-third of children under 5 y old in developing countries, and 14% of childhood deaths are attributable to it. A large number of risk factors for stunting have been identified in epidemiological studies. However, the relative contribution of these risk factors to stunting has not been examined across countries. We estimated the number of stunting cases among children aged 24–35 mo (i.e., at the end of the 1,000 days’ period of vulnerability) that are attributable to 18 risk factors in 137 developing countries.Methods and FindingsWe classified risk factors into five clusters: maternal nutrition and infection, teenage motherhood and short birth intervals, fetal growth restriction (FGR) and preterm birth, child nutrition and infection, and environmental factors. We combined published estimates and individual-level data from population-based surveys to derive risk factor prevalence in each country in 2010 and identified the most recent meta-analysis or conducted de novo reviews to derive effect sizes. We estimated the prevalence of stunting and the number of stunting cases that were attributable to each risk factor and cluster of risk factors by country and region.The leading risk worldwide was FGR, defined as being term and small for gestational age, and 10.8 million cases (95% CI 9.1 million–12.6 million) of stunting (out of 44.1 million) were attributable to it, followed by unimproved sanitation, with 7.2 million (95% CI 6.3 million–8.2 million), and diarrhea with 5.8 million (95% CI 2.4 million–9.2 million). FGR and preterm birth was the leading risk factor cluster in all regions. Environmental risks had the second largest estimated impact on stunting globally and in the South Asia, sub-Saharan Africa, and East Asia and Pacific regions, whereas child nutrition and infection was the second leading cluster of risk factors in other regions.Although extensive, our analysis is limited to risk factors for which effect sizes and country-level exposure data were available. The global nature of the study required approximations (e.g., using exposures estimated among women of reproductive age as a proxy for maternal exposures, or estimating the impact of risk factors on stunting through a mediator rather than directly on stunting). Finally, as is standard in global risk factor analyses, we used the effect size of risk factors on stunting from meta-analyses of epidemiological studies and assumed that proportional effects were fairly similar across countries.ConclusionsFGR and unimproved sanitation are the leading risk factors for stunting in developing countries. Reducing the burden of stunting requires a paradigm shift from interventions focusing solely on children and infants to those that reach mothers and families and improve their living environment and nutrition.
Background Low- and middle-income countries continue to experience a large burden of stunting; 148 million children were estimated to be stunted, around 30–40% of all children in 2011. In many of these countries, foetal growth restriction (FGR) is common, as is subsequent growth faltering in the first 2 years. Although there is agreement that stunting involves both prenatal and postnatal growth failure, the extent to which FGR contributes to stunting and other indicators of nutritional status is uncertain. Methods Using extant longitudinal birth cohorts (n = 19) with data on birth-weight, gestational age and child anthropometry (12–60 months), we estimated study-specific and pooled risk estimates of stunting, wasting and underweight by small-for-gestational age (SGA) and preterm birth. Results We grouped children according to four combinations of SGA and gestational age: adequate size-for-gestational age (AGA) and preterm; SGA and term; SGA and preterm; and AGA and term (the reference group). Relative to AGA and term, the OR (95% confidence interval) for stunting associated with AGA and preterm, SGA and term, and SGA and preterm was 1.93 (1.71, 2.18), 2.43 (2.22, 2.66) and 4.51 (3.42, 5.93), respectively. A similar magnitude of risk was also observed for wasting and underweight. Low birthweight was associated with 2.5–3.5-fold higher odds of wasting, stunting and underweight. The population attributable risk for overall SGA for outcomes of childhood stunting and wasting was 20% and 30%, respectively. Conclusions This analysis estimates that childhood undernutrition may have its origins in the foetal period, suggesting a need to intervene early, ideally during pregnancy, with interventions known to reduce FGR and preterm birth.
Objectives To estimate small for gestational age birth prevalence and attributable neonatal mortality in low and middle income countries with the INTERGROWTH-21st birth weight standard. Design Secondary analysis of data from the Child Health Epidemiology Reference Group (CHERG), including 14 birth cohorts with gestational age, birth weight, and neonatal follow-up. Small for gestational age was defined as infants weighing less than the 10th centile birth weight for gestational age and sex with the multiethnic, INTERGROWTH-21st birth weight standard. Prevalence of small for gestational age and neonatal mortality risk ratios were calculated and pooled among these datasets at the regional level. With available national level data, prevalence of small for gestational age and population attributable fractions of neonatal mortality attributable to small for gestational age were estimated. Setting CHERG birth cohorts from 14 population based sites in low and middle income countries. Main outcome measures In low and middle income countries in the year 2012, the number and proportion of infants born small for gestational age; number and proportion of neonatal deaths attributable to small for gestational age; the number and proportion of neonatal deaths that could be prevented by reducing the prevalence of small for gestational age to 10%. Results In 2012, an estimated 23.3 million infants (uncertainty range 17.6 to 31.9; 19.3% of live births) were born small for gestational age in low and middle income countries. Among these, 11.2 million (0.8 to 15.8) were term and not low birth weight (≥2500 g), 10.7 million (7.6 to 15.0) were term and low birth weight (<2500 g) and 1.5 million (0.9 to 2.6) were preterm. In low and middle income countries, an estimated 606 500 (495 000 to 773 000) neonatal deaths were attributable to infants born small for gestational age, 21.9% of all neonatal deaths. The largest burden was in South Asia, where the prevalence was the highest (34%); about 26% of neonatal deaths were attributable to infants born small for gestational age. Reduction of the prevalence of small for gestational age from 19.3% to 10.0% in these countries could reduce neonatal deaths by 9.2% (254 600 neonatal deaths; 164 800 to 449 700). Conclusions In low and middle income countries, about one in five infants are born small for gestational age, and one in four neonatal deaths are among such infants. Increased efforts are required to improve the quality of care for and survival of these high risk infants in low and middle income countries
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.