We present 2241 exoplanet candidates identified with data from the Transiting Exoplanet Survey Satellite (TESS) during its 2 yr Prime Mission. We list these candidates in the TESS Objects of Interest (TOI) Catalog, which includes both new planet candidates found by TESS and previously known planets recovered by TESS observations. We describe the process used to identify TOIs, investigate the characteristics of the new planet candidates, and discuss some notable TESS planet discoveries. The TOI catalog includes an unprecedented number of small planet candidates around nearby bright stars, which are well suited for detailed follow-up observations. The TESS data products for the Prime Mission (sectors 1-26), including the TOI catalog, light curves, full-frame images, and target pixel files, are publicly available at the Mikulski Archive for Space Telescopes.
The future of exoplanet science is bright, as TESS once again demonstrates with the discovery of its longest-period confirmed planet to date. We hereby present HD 21749b (TOI 186.01), a sub-Neptune in a 36-day orbit around a bright (V = 8.1) nearby (16 pc) K4.5 dwarf. TESS measures HD21749b to be 2.61 +0.17 −0.16 R ⊕ , and combined archival and follow-up precision radial velocity data put the mass of the planet at 22.7 +2.2 −1.9 M ⊕ . HD 21749b contributes to the TESS Level 1 Science Requirement of * This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
We present the discovery of HD 221416 b, the first transiting planet identified by the Transiting Exoplanet Survey Satellite (TESS) for which asteroseismology of the host star is possible. HD 221416 b (HIP 116158, TOI-197) is a bright (V=8.2 mag), spectroscopically classified subgiant that oscillates with an average frequency of about 430 μHz and displays a clear signature of mixed modes. The oscillation amplitude confirms that the redder TESS bandpass compared to Kepler has a small effect on the oscillations, supporting the expected yield of thousands of solar-like oscillators with TESS 2 minute cadence observations. Asteroseismic modeling yields a robust determination of the host star radius (R å =2.943±0.064 R e), mass (M å =1.212±0.074 M e), and age (4.9±1.1 Gyr), and demonstrates that it has just started ascending the red-giant branch. Combining asteroseismology with transit modeling and radial-velocity observations, we show that the planet is a "hot Saturn" (R p =9.17±0.33 R ⊕) with an orbital period of ∼14.3 days, irradiance of F=343±24 F ⊕ , and moderate mass (M p =60.5±5.7 M ⊕) and density (ρ p =0.431±0.062 g cm −3). The properties of HD 221416 b show that the host-star metallicity-planet mass correlation found in sub-Saturns (4-8 R ⊕) does not extend to larger radii, indicating that planets in the transition between sub-Saturns and Jupiters follow a relatively narrow range of densities. With a density measured to ∼15%, HD 221416 b is one of the best characterized Saturn-size planets to date, augmenting the small number of known transiting planets around evolved stars and demonstrating the power of TESS to characterize exoplanets and their host stars using asteroseismology.
Context. We report the discovery of TOI 263.01 (TIC 120916706), a transiting substellar object (R = 0.87 R Jup ) orbiting a faint M3.5 V dwarf (V = 18.97) on a 0.56 d orbit.Aims. We set out to determine the nature of the TESS planet candidate TOI 263.01 using ground-based multicolour transit photometry. The host star is faint, which makes RV confirmation challenging, but the large transit depth makes the candidate suitable for validation through multicolour photometry.Methods. Our analysis combines three transits observed simultaneously in r , i , and z s bands using the MuSCAT2 multicolour imager, three LCOGT-observed transit light curves in g , r , and i bands, a TESS light curve from Sector 3, and a low-resolution spectrum for stellar characterisation observed with the ALFOSC spectrograph. We model the light curves with PyTransit using a transit model that includes a physics-based light contamination component that allows us to estimate the contamination from unresolved sources from the multicolour photometry. This allows us to derive the true planet-star radius ratio marginalised over the contamination allowed by the photometry, and, combined with the stellar radius, gives us a reliable estimate of the object's absolute radius. Results. The ground-based photometry strongly excludes contamination from unresolved sources with a significant colour difference to TOI 263. Further, contamination from sources of same stellar type as the host is constrained to levels where the true radius ratio posterior has a median of 0.217 and a 99 percentile of 0.286. The median and maximum radius ratios correspond to absolute planet radii of 0.87 and 1.41 R Jup , respectively, which confirms the substellar nature of the planet candidate. The object is either a giant planet or a brown dwarf (BD) located deep inside the socalled "brown dwarf desert". Both possibilities offer a challenge to current planet/BD formation models and makes TOI 263.01 an object deserving of in-depth follow-up studies.
We report the discovery of TOI-172 b from the Transiting Exoplanet Survey Satellite (TESS) mission, a massive hot Jupiter transiting a slightly evolved G star with a 9.48-day orbital period. This is the first planet to be confirmed from analysis of only the TESS full frame images, because the host star was not chosen as a two-minute cadence target. From a global analysis of the TESS photometry and follow-up observations carried out by the TESS Followup Observing Program Working Group, TOI-172 (TIC 29857954) is a slightly evolved star with an effective temperature of T eff =5645±50K, a mass of M å =1.128 0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.